740
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Effect of a cellulose decomposing bacterium, humic acid, and wheat straw on Cucurbita pepo L. growth and soil properties

ORCID Icon, &
Article: 2246182 | Received 24 May 2023, Accepted 04 Aug 2023, Published online: 13 Aug 2023

References

  • Abd El-Mageed, T. A., Semida, W. M., & Abd El-Wahed, M. H. (2016). Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agricultural Water Management, 173, 1–20. https://doi.org/10.1016/j.agwat.2016.04.025
  • Abo-Elyousr, K. A. M., Khalil Bagy, H. M. M., Hashem, M., Alamri, S. A. M., & Mostafa, Y. S. (2019). Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control, 29(1), 54. https://doi.org/10.1186/s41938-019-0152-6
  • Adesemoye, A. O., & Kloepper, J. W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85(1), 1–12. https://doi.org/10.1007/s00253-009-2196-0
  • Akhtar, K., Shah, S. N. M., Ali, A., Zaheer, S., Wahid, F., Khan, A., Shah, M., Bibi, S., & Majid, A. (2014). Effects of humic acid and crop residues on soil and wheat nitrogen contents. American Journal of Plant Sciences, 5(9), 1277–1284. https://doi.org/10.4236/ajps.2014.59141
  • Alkolibi, F. M. (2002). Possible effects of global warming on agriculture and water resources in Saudi Arabia: Impacts and responses. Climate Change, 54(1/2), 225–245. https://doi.org/10.1023/A:1015777403153
  • Allen, J., Pascual, K. S., Romasanta, R. R., Trinh, M. V., Thach, T. V., Hung, N. V., Sander, B. O., & Chivenge, P. (2020). Rice straw management effects on greenhouse gas emissions and mitigation options. In M. Gummert, N. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable rice straw management (pp. 145–159). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_9
  • Al-Omran, A. M., Sheta, A. S., Falatah, A. M., & Al-Harbi, A. R. (2005). Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agricultural Water Management, 73(1), 43–55. https://doi.org/10.1016/j.agwat.2004.09.019
  • Angelovicova, L., Lodenius, M., Tulisalo, E., & Fazekasova, D. (2014). Effect of heavy metals on soil enzyme activity at different field conditions in middle spis mining area (Slovakia). Bulletin of Environmental Contamination and Toxicology, 93(6), 670–675. https://doi.org/10.1007/s00128-014-1397-0
  • Antonious, G. F., Dawood, M. H., Turley, E. T., & Trivette, T. G. (2022). Soil amendments enhanced summer squash yield, fruit composition, quality, and soil enzymes activity. Agricultural Science, 13(06), 684–701. https://doi.org/10.4236/as.2022.136045
  • Arif, I., Batool, M., & Schenk, P. M. (2020). Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends in Biotechnology, 38(12), 1385–1396. https://doi.org/10.1016/j.tibtech.2020.04.015
  • Barrit, M. M. (1936). The intensification of the Voges-Proskauer reaction by the addition of α-naphthol. Journal of Pathology and Bacteriology, 42(2), 441. https://doi.org/10.1002/path.1700420212
  • Bello, S. K., Alayafi, A. H., AL-Solaimani, S. G., & Abo-Elyousr, K. A. (2021). Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy, 11(9), 1735. https://doi.org/10.3390/agronomy11091735
  • Bello, S. K., AL-Solaimani, S. G., & Abo-Elyousr, K. A. (2022a). The effect of bio-organic amendments on the fruit weight and quality of summer squash under arid land conditions. Gesunde Pflanzen, 75(4), 1–15. https://doi.org/10.1007/s10343-022-00802-3
  • Bello, S. K., Al-Solaimani, S. G., & Abo-Elyousr, K. A. (2022b). Squash yield, water-use efficiency and nitrate accumulation as influenced by the application of humic acid, Geobacillus stearothermophilus SSK-2018 and wheat straw in an arid land condition. Horticulturae, 8(7), 588. https://doi.org/10.3390/horticulturae8070588
  • Bello, S. K., & Yusuf, A. A. (2021). Phosphorus influences the performance of mycorrhiza and organic manure in maize production. Journal of Plant Nutrition, 44(5), 679–691. https://doi.org/10.1080/01904167.2020.1849295
  • Bello, S. K., Yusuf, A. A., & Cargele, M. (2018). Performance of cowpea as influenced by native strain of rhizobia, lime and phosphorus in Samaru, Nigeria. Symbiosis, 75(3), 167–176. https://doi.org/10.1007/s13199-017-0507-2
  • Bhardwaj, N., Kumar, B., Agrawal, K., & Verma, P. (2021). Green biomimetic synthesis of Ag–TiO2 nanocomposite using Origanum majorana leaf extract under sonication and their biological activities. Bioresources and Bioprocessing, 8(1), 1–34. https://doi.org/10.1186/s40643-020-00357-z
  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8
  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(1), 1–11. https://doi.org/10.1186/2196-5641-1-3
  • Chaiharn, M., & Lumyong, S. (2011). Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Current Microbiology, 62(1), 173–181. https://doi.org/10.1007/s00284-010-9674-6
  • Chaparro, J. M., Sheflin, A. M., Manter, D. K., & Vivanco, J. M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4
  • Cozzolino, V., Monda, H., Savy, D., DiMeo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8(1), 31. https://doi.org/10.1186/s40538-021-00230-x
  • Cruickshank, R., Duguid, J. P., Marmion, B. P., & Swain, R. H. A. (1975). Medical Microbiology (12 Ed.). (Vol. 2). Churchill Livingstone Publishing Company:
  • Dobbss, L. B., Pasqualoto Canellas, L., Lopes Olivares, F., Oliveira Aguiar, N., Peres, L. E. P., Azevedo, M., Spaccini, R., Piccolo, A., & Façanha, A. R. (2010). Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. Journal of Agricultural and Food Chemistry, 58(6), 3681–3688. https://doi.org/10.1021/jf904385c
  • Esteghlalian, A. R., Mansfield, S. D., & Saddler, J. N. (2002). Cellulases: agents for fiber modification or bioconversion? The effect of substrate accessibility on cellulose enzymatic hydrolyzability. In L. Viikari & R. Lantto (Eds.), Progress in biotechnology (Vol. 21, pp. 21–36). Elsevier. https://doi.org/10.1016/S0921-0423(02)80005-3
  • Feoktistova, A., Bakaeva, M., Timergalin, M., Chetverikova, D., Kendjieva, A., Rameev, T., Hkudaygulov, G., Nazarov, A., Kudoyarova, G., & Chetverikov, S. (2022). Effects of humic substances on the growth of Pseudomonas plecoglossicida 2, 4-D and wheat plants inoculated with this strain. Microorganisms [Internet], 10(5), 1066. https://doi.org/10.3390/microorganisms10051066
  • George, T. S., Hinsinger, P., & Turner, B. L. (2016). Phosphorus in soils and plants–facing phosphorus scarcity. Plant and Soil, 401(1–2), 1–6. https://doi.org/10.1007/s11104-016-2846-9
  • Ghanney, P., Yeboah, S., Anning, D. K., Yang, H., Wang, Y., & Qiu, H. (2023). Moisture-induced effects on lignocellulosic and humification fractions in aerobically composted straw and manure. Fermentation, 9(6), 551. https://doi.org/10.3390/fermentation9060551
  • Gichana, Z., Liti, D., Wakibia, J., Ogello, E., Drexler, S., Meulenbroek, P., Ondiba, R., Zollitsch, W., & Waidbacher, H. (2019). Efficiency of pumpkin (Cucurbita pepo), sweet wormwood (Artemisia annua) and amaranth (Amaranthus dubius) in removing nutrients from a smallscale recirculating aquaponic system. Aquaculture International, 27(6), 1767–1786. https://doi.org/10.1007/s10499-019-00442-x
  • Goel, P., & Dhingra, M. (2021). Humic substances: prospects for use in agriculture and medicine. In A. Makan (Ed.), Humic substances (pp. 1–21). IntechOpen.
  • Hansen, V., Bonnichsen, L., Nunes, I., Sexlinger, K., Lopez, S. R., van der Bom, F. J. T., Nybroe, O., Nicolaisen, M. H., & Jensen, L. S. (2020). Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 56(1), 97–109. https://doi.org/10.1007/s00374-019-01401-7
  • Hensyl, W. R. (1994). Bergey’s Manual of Systematic Bacteriology, 9th ed. Holt J. G. and Williams S. T., and Williams Wilkins.
  • He, L. Y., Sequeira, L., & Kelman, A. (1983). Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease, 67(12), 1357–1361. https://doi.org/10.1094/PD-67-1357
  • Hsiao, T. C., & Jackson, R. B. (1999). Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water-use efficiency. In Carbon dioxide and environmental stress (pp. 3–31). Academic Press. https://doi.org/10.1016/B978-012460370-7/50002-4
  • Jia, S., Yuan, D., Li, W., He, W., Raza, S., Kuzyakov, Y., Zamanian, K., & Zhao, X. (2022). Soil chemical properties depending on fertilization and management in china: A meta-analysis. Agronomy, 12(10), 2501. https://doi.org/10.3390/agronomy12102501
  • Lee, E. P., Han, Y. S., Lee, S. I., Cho, K. T., Park, J. H., & You, Y. H. (2017). Effect of nutrient and moisture on the growth and reproduction of Epilobium hirsutum L., an endangered plant. Journal of Ecology and Environment, 41(1), 35. https://doi.org/10.1186/s41610-017-0054-z
  • Liu, H., Qi, Y., Wang, J., Jiang, Y., & Geng, M. (2021). Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol. Scientific Reports, 11(1), 24225. https://doi.org/10.1038/s41598-021-03799-3
  • Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L., & Zhao, K. (2011). Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil and Tillage Research, 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007
  • Maji, D., Misra, P., Singh, S., & Kalra, A. (2017). Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, 110, 97–108. https://doi.org/10.1016/j.apsoil.2016.10.008
  • Ma, C., Johansen, K., & McCabe, M. F. (2022). Monitoring irrigation events and crop dynamics using Sentinel-1 and Sentinel-2 time series. Remote Sensing, 14(5), 1205. https://doi.org/10.3390/rs14051205
  • Melo, R. O. D., Oliveira, H. P. D., Silveira, K. C., Baldotto, L. E. B., & Baldotto, M. A. (2018). Initial performance of maize in response to humic acids and plant growth-promoting bacteria. Revista Ceres, 65(3), 271–277. https://doi.org/10.1590/0034-737x201865030007
  • Monda, H., Cozzolino, V., Vinci, G., Drosos, M., Savy, D., & Piccolo, A. (2018). Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize. Plant and Soil, 429(1–2), 407–424. https://doi.org/10.1007/s11104-018-3642-5
  • Nardi, S., Ertani, A., & Francioso, O. (2017). Soil–root cross‐talking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 180(1), 5–13. https://doi.org/10.1002/jpln.201600348
  • Neumann, G., & Römheld, V. (2012). Rhizosphere chemistry in relation to plant nutrition. In Marschner’s mineral nutrition of higher plants (pp. 347–368). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00014-5
  • Nieweś, D., Huculak-Mączka, M., Braun-Giwerska, M., Marecka, K., Tyc, A., Biegun, M., Hoffmann, K., & Hoffmann, J. (2022). Ultrasound-assisted extraction of humic substances from peat: Assessment of process efficiency and products’ quality. Molecules, 27(11), 3413. https://doi.org/10.3390/molecules27113413
  • Nigussie, A., Dume, B., Ahmed, M., Mamuye, M., Ambaw, G., Berhiun, G., Biresaw, A., & Aticho, A. (2021). Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: A meta-analysis. Waste Management, 125, 220–234. https://doi.org/10.1016/j.wasman.2021.02.043
  • Ogunwande, G., Osunade, J., Adekalu, K., & Ogunjimi, L. (2008). Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresource Technology, 99(16), 7495–7503. https://doi.org/10.1016/j.biortech.2008.02.020
  • Olivares, F. L., Busato, J. G., de Paula, A. M., da Silva Lima, L., Aguiar, N. O., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4(1), 1–13. https://doi.org/10.1186/s40538-017-0112-x
  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. mineralogical, organic and inorganic methods. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31211-6
  • Paterson, E., Sim, A., Osborne, S. M., & Murray, P. J. (2011). Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil Biology & Biochemistry, 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006
  • Piccolo, A., Spaccini, R., Drosos, M., Vinci, G., & Cozzolino, V. (2018). The molecular composition of humus carbon: Recalcitrance and reactivity in soils. In C. Garcia, P. Nannipieri, & T. Hernandez (Eds.), The future of soil carbon (pp. 87–124). Academic Press. https://doi.org/10.1016/B978-0-12-811687-6.00004-3
  • Pishchik, V. N., Vorobyov, N. I., Walsh, O. S., Surin, V. G., & Khomyakov, Y. V. (2016). Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39(8), 1074–1086. https://doi.org/10.1080/01904167.2015.1061551
  • R Core Team. (2021) R: A language and environment for statistical computing. Retrieved January 31, 2023. https://www.R-project.org/
  • Rodarte, M. P., Dias, D. R., Vilela, D. M., & Schwan, R. F. (2011). Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Scientiarum Agronomy, 33(3). https://doi.org/10.4025/actasciagron.v33i3.6734
  • Sands, D. C. (1990). Physiological criteria: Determinative tests. In Z. Klement, K. Rudolph, & D.C. Sands (Eds.), Methods in Phytobacteriology (pp. 133–143). Akademiai Kiado.
  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic Bacteria (3rd ed.). American Phytopathological Society Press.
  • Stapp, C. (1961). Bacterial plant pathogen (Vol. 15). Oxford University Press.
  • Sun, N., Gao, C., Ding, Y., Bi, Y., Seglah, P. A., & Wang, Y. (2022). Five-dimensional straw utilization model and its impact on carbon emission reduction in China. Sustainability, 14(24), 16722. https://doi.org/10.3390/su142416722
  • Sutradhar, S., & Fatehi, P. (2023). Latest development in the fabrication and use of lignin-derived humic acid. Biotechnology for Biofuels and Bioproducts, 16(1), 38. https://doi.org/10.1186/s13068-023-02278-3
  • Thomason, W. E., Evanylo, G. K., Zhang, X., Strickland, M. S., Chim, B. K., & Diatta, A. A. (2020). The synergistic effects of humic substances and biofertilizers on plant development and microbial activity: A review. International Journal of Plant & Soil Science, 32(7), 56–75. https://doi.org/10.9734/ijpss/2020/v32i730306
  • United Nations Department of Economics and Social Affairs, UNDESA, (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved April 26, 2023. https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100.html
  • Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998
  • Veres, Z., Kotroczó, Z., Fekete, I., Tóth, J. A., Lajtha, K., Townsend, K., & Tóthmérész, B. (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18–23. https://doi.org/10.1016/j.apsoil.2015.03.006
  • Verma, R., Maurya, B. R., & Meena, V. S. (2014). Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian Journal Agricultural Science, 84(8), 914–919.
  • Weil, R. R., & Brady, N. C. (2017). The nature and properties of soils (15th ed.). ISBN: 978-0133254488. Pearson Education.
  • Yang, H. S., Xu, M., Li, Y., Xu, C., Zhai, S., & Liu, J. (2020). The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil and Tillage Research, 202, 104646. https://doi.org/10.1016/j.still.2020.104656
  • Zhang, P., Wei, T., Jia, Z. K., Han, Q. F., & Ren, X. L. (2014). Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma, 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007