495
Views
1
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Study of the biochemical activity and plant growth promoting bacteria in soils polluted with oxyfluorfen

, , , &
Article: 2247171 | Received 09 Jun 2023, Accepted 08 Aug 2023, Published online: 13 Aug 2023

References

  • Alemneh, A. A., Zhou, Y., Ryder, M. H., Denton, M. D., Denton, M., & Zhou, Y. (2020). Mechanisms in plant growth-promoting rhizobacteria that enhance legume–rhizobial symbioses. Journal of Applied Microbiology, 129(5), 1133–17. https://doi.org/10.1111/jam.14754
  • Alori, E. T., & Babalola, O. O. (2018). Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology, 9, 2213. https://doi.org/10.3389/fmicb.2018.02213
  • Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971
  • Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Shenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “Dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431. https://doi.org/10.1093/jaoac/86.2.412
  • Araujo, A. S. F., Pertile, M., Costa, R. M., Costa, M. K. L., de Aviz, R. O., Mendes, L. W., de Medeiros, E. V., da Costa, D. P., Melo, V. M. M., & Pereira, A. P. A. (2023). Short-term responses of plant growth-promoting bacterial community to the herbicides imazethapyr and flumioxazin. Chemosphere, 328, 138581. https://doi.org/10.1016/j.chemosphere.2023.138581
  • Ávila-Pozo, P., Parrado, J., Caballero, P., Díaz-López, M., Bastida, F., & Tejada, M. (2021). Use of slaughterhouse sludge in the bioremediation of an oxyfluorfen-polluted soil. International Journal of Environmental Health Research, 15(4), 723–731. https://doi.org/10.1007/s41742-021-00351-z
  • Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 871, 1473. https://doi.org/10.3389/fpls.2018.01473
  • Barba, S., Villaseñor, J., Rodrigo, M. A., & Cañizares, P. (2017). Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil. Chemosphere, 177, 120–127. https://doi.org/10.1016/j.chemosphere.2017.03.002
  • Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology, 31(8), 1045–1059. https://doi.org/10.4014/jmb.2105.05009
  • Castillo Diaz, J. M., Delgado-Moreno, L., Núñez, R., Nogales, R., & Romero, E. (2016). Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresource Technology, 214, 234–241. https://doi.org/10.1016/j.biortech.2016.04.105
  • Chamkhi, I., El Omari, N., Balahbib, A., El Menyiy, N., Benali, T., & Ghoulam, C. (2022). Is —— the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi Journal of Biological Sciences, 29(2), 1246. https://doi.org/10.1016/j.sjbs.2021.09.032
  • Das, A. C., & Debnath, A. (2006). Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal. Chemosphere, 65(6), 1082–1086. https://doi.org/10.1016/j.chemosphere.2006.02.063
  • Das, A. C., Debnath, A., & Mukherjee, D. (2003). Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields. Chemosphere, 53(3), 217–221. https://doi.org/10.1016/S0045-6535(03)00440-5
  • Del Castillo, I., Hernández, P., Lafuente, A., Rodríguez-Llorente, I. D., Caviedes, M. A., & Pajuelo, E. (2012). Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles. Water Research, 46(6), 1723–1734. https://doi.org/10.1016/j.watres.2011.12.038
  • EPA. (2002) . Office of pesticide programs. U. US EPA - Pesticides - Fact Sheet for Oxyfluorfen.
  • Filimon, M. N., Roman, D. L., Bordean, D. M., & Isvoran, A. (2021). Impact of the herbicide oxyfluorfen on the activities of some enzymes found in soil and on the populations of soil microorganisms. Agronomy, 11(9), 1702. https://doi.org/10.3390/agronomy11091702
  • Flores-Duarte, N. J., Mateos-Naranjo, E., Redondo-Gómez, S., Pajuelo, E., Rodriguez-Llorente, I. D., & Navarro-Torre, S. (2022). Role of nodulation-enhancing rhizobacteria in the promotion of Medicago sativa development in nutrient-poor soils. Plants, 11, 1164. https://doi.org/10.3390/plants11091164
  • Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2016). Behavior of two pesticides in a soil subjected to severe drought. Effects on soil biology. Applied Soil Ecology, 105, 17–24. https://doi.org/10.1016/j.apsoil.2016.04.001
  • García, C., Hernández, T., Costa, F., Ceccanti, B., & Masciandaro, G. (1993). The dehydrogenase activity of soils and ecological marker in processes of perturbed system regeneration. In J. Gallardo-Lancho (Ed.), XI International Symposium Environmental Biogeochemistry (pp. 89–100).
  • Gómez, I., Rodríguez-Morgado, B., Parrado, J., García, C., Hernández, T., & Tejada, M. (2014). Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. Journal of Hazardous Materials, 273, 207–214. https://doi.org/10.1016/j.jhazmat.2014.03.051
  • Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192–195. https://doi.org/10.1104/pp.26.1.192
  • Goswami, D., Parmar, S., Vaghela, H., Dhandhukia, P. C., Thakker, J. N., & Moral, M. T. (2015). Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food & Agriculture, 1(1), 1000714. https://doi.org/10.1080/23311932.2014.1000714
  • Goswami, D., Thakker, J. N., Dhandhukia, P. C., & Tejada Moral, M. (2016). Portraying mechanics of Plant Growth Promoting Rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1), 1127500. https://doi.org/10.1080/23311932.2015.1127500
  • Ji, S. H., Gururani, M. A., & Chun, S. C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169(1), 83–98. https://doi.org/10.1016/j.micres.2013.06.003
  • Kang, S. M., Bilal, S., Shahzad, R., Kim, Y. N., Park, C. W., Lee, K. E., Lee, J. R., & Lee, I. J. (2020). Effect of ammonia and indole-3-acetic acid producing endophytic Klebsiella pneumoniae YNA12 as a bio-herbicide for weed inhibition: Special reference with evening primroses. Plants, 9(6), 761. https://doi.org/10.3390/plants9060761
  • Khalid, S., Shahid, M., Murtaza, B., Bibi, I., Naeem, M. N. A., Niazi, N. K., & Niazi, N. K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711, 134645. https://doi.org/10.1016/j.scitotenv.2019.134645
  • Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human & Ecological Risk Assessment, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242
  • Liu, Y. C., Qu, R. Y., Chen, Q., Yang, J. F., Cong-Wei, N., Zhen, X., & Yang, G. F. (2016). Triazolopyrimidines as a new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation. Journal of Agricultural & Food Chemistry, 64(24), 4845–4857. https://doi.org/10.1021/acs.jafc.6b00720
  • Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63(1), 73–105. https://doi.org/10.1146/annurev-arplant-042811-105439
  • MAPA. (2022). Lista comunitaria de sustancias activas aprobadas, excluidas y en evaluación comunitaria, sustancias de bajo riesgo, sustancias candidatas a la sustitución y lista de sustancias básicas. Pub. L. No. Regalmento (CE) No 1107/2009 (2022). Ministerio de Agricultura, Pesca y Alimentación.
  • Mesa, J., Mateos-Naranjo, E., Caviedes, M. A., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. D. (2015). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 90(1–2), 150–159. https://doi.org/10.1016/j.marpolbul.2014.11.002
  • Mohamed, A. T., El Hussein, A. A., El Siddig, M. A., & Osman, A. G. (2011). Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology, 10(3), 274–279. https://doi.org/10.3923/biotech.2011.274.279
  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  • Navarro-Torre, S., Bessadok, K., Flores-Duarte, N. J., Rodríguez-Llorente, I. D., Caviedes, M. A., & Pajuelo, E. (2020). Helping legumes under stress situations: Inoculation with beneficial microorganisms. In M. Hasanuzzaman (Ed.), Legume crops. https://doi.org/10.5772/INTECHOPEN.91857
  • Navarro-Torre, S., Mateos-Naranjo, E., Caviedes, M. A., Pajuelo, E., & Rodríguez-Llorente, I. D. (2016). Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Marine Pollution Bulletin, 110(1), 133–142. https://doi.org/10.1016/j.marpolbul.2016.06.070
  • Ogura, A. P., Lima, J. Z., Marques, J. P., Sousa, L. M., Rodrigues, V. G. S., & Espíndola, E. L. G. (2021). A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Journal of Environmental Management, 300, 113753. https://doi.org/10.1016/j.jenvman.2021.113753
  • Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology & Biotechnology, 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9
  • Park, J. M., Radhakrishnan, R., Kang, S. M., & Lee, I. J. (2015). IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: A special reference with lettuce growth inhibition. Indian Journal of Microbiology, 55(2), 207. https://doi.org/10.1007/s12088-015-0515-y
  • Pavel, A. B., & Vasile, C. I. (2012). PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics, 13(1), 9. https://doi.org/10.1186/1471-2105-13-9
  • Rodríguez-Morgado, B., Gómez, I., Parrado, J., & Tejada, M. (2014). Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. Environmental Science and Pollution Research, 21(18), 11027–11035. https://doi.org/10.1007/s11356-014-3040-3
  • Rossi, F. (2020). Beneficial biofilms for land rehabilitation and fertilization. FEMS Microbiology Letters, 367(21), fnna184. https://doi.org/10.1093/femsle/fnaa184
  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Sheeba, P. S. V., Kumar, S. P., Mohan, P. S., & Mohan Prasad, S. (2011). Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicology & Environmental Safety, 74(7), 1981–1993. https://doi.org/10.1016/j.ecoenv.2011.07.006
  • Sheng, E., Lu, Y., Tan, Y., Xiao, Y., Li, Z., & Dai, Z. (2020). Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chemistry, 331, 127090. https://doi.org/10.1016/j.foodchem.2020.127090
  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14(1), 1–20. https://doi.org/10.1186/1471-2164-14-271
  • Singh, M. K., Singh, N. K., & Singh, S. P. (2020). Impact of herbicide use on soil microorganisms. In P. Singh, S. K. Singh, & S. M. Prasad (Eds.), Plant responses to soil pollution (pp. 179–194). Springer.
  • Sondhia, S. (2010). Persistence and bioaccumulation of oxyfluorfen residues in onion. Environmental Monitoring and Assessment, 162(1–4), 163–168. https://doi.org/10.1007/s10661-009-0784-1
  • Starke, R., Jehmlich, N., & Bastida, F. (2019). Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. Journal of Proteomics, 198, 50–58. https://doi.org/10.1016/j.jprot.2018.11.011
  • Tejada, M. (2009). Application of different organic wastes in a soil polluted by cadmium: Effects on soil biological properties. Geoderma, 153(1–2), 254–268. https://doi.org/10.1016/j.geoderma.2009.08.009
  • Tejada, M., Gómez, I., Franco-Andreu, L., & Benitez, C. (2016). Role of different earthworms in a soil polluted with oxyfluorfen herbicide. Short-time response on soil biochemical properties. Ecological Engineering, 86, 39–44. https://doi.org/10.1016/j.ecoleng.2015.09.058
  • Tejada, M., Gómez, I., Paneque, P., Del Toro, M., García-Quintanilla, A., & Parrado, J. (2023). Use of biostimulants obtained from sewage sludge for the restoration of soils polluted by diuron: Effect on soil biochemical properties. Agronomy, 13(1), 24. https://doi.org/10.3390/agronomy13010024
  • Tejada, M., Macias-Benitez, S., Caballero, P., Gómez, I., Paneque, P., & Parrado, J. (2022). Bioremediation of an oxyfluorfen-polluted soil using biostimulants obtained by fermentation processes: Effect on biological properties. Applied Soil Ecology, 170, 929–1393. https://doi.org/10.1016/j.apsoil.2021.104270
  • Tejada, M., Morillo, E., Gómez, I., Madrid, F., & Undabeytia, T. (2017). Effect of controlled release formulations of diuron and alachlor herbicides on the biochemical activity of agricultural soils. Journal of Hazardous Materials, 322, 334–347. https://doi.org/10.1016/j.jhazmat.2016.10.002
  • Trevors, J. T., Mayfield, C. I., & Inniss, W. E. (1982). Measurement of electron transport system (ETS) activity in soil. Microbial Ecology, 8(2), 163–168. https://doi.org/10.1007/BF02010449
  • Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environment Research Public Health, 18(3), 1112–1124. https://doi.org/10.3390/ijerph18031112
  • Turan, M., Kıtır, N., Alkaya, Ü., Günes, A., Tüfenkçi, S., Yıldırım, E., & Nikerel, E. (2016). Making soil more accessible to plants: The case of plant growth promoting rhizobacteria. In E. C. Rigobelo (Ed.), Plant growth (pp. 61–69). https://doi.org/10.5772/64826
  • Wang, B., Wen, X., & Xi, Z. (2016). Molecular simulations bring new insights into protoporphyrinogen IX oxidase/protoporphyrinogen IX interaction modes. Molecular Informatics, 35(10), 476–482. https://doi.org/10.1002/MINF.201600008
  • WRB. (2014). World reference base for soil resources 2014. In International soil classification system for naming soils and creating legends for soil maps (pp. 192). Food and Agriculture Organization of the United Nations.
  • Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117
  • Zeng, Q., Ding, X., Wang, J., Han, X., Iqbal, H. M. N., & Bilal, M. (2022). Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 29(30), 45089–45106. https://doi.org/10.1007/s11356-022-20399-4
  • Zhang, Q., Zhang, L., Wang, H., Jiang, Q., & Zhu, X. (2018). Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis. Bioresource Technology, 250, 658–665. https://doi.org/10.1016/j.biortech.2017.11.091
  • Zhao, H., Xu, J., Dong, F., Liu, X., Wu, Y., Wu, X., & Zheng, Y. (2016). Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway. Applied Microbiology and Biotechnology, 100(15), 6837–6845. https://doi.org/10.1007/s00253-016-7504-x
  • Zhou, Y., Bastida, F., Zhou, B., Sun, Y., Gu, T., Li, S., & Li, Y. (2020). Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology & Biochemistry, 141, 107663. https://doi.org/10.1016/j.soilbio.2019.107663