433
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Subsidy strategies of grain supply chain considering stakeholder efforts on post-harvest loss reduction and pollution emission reduction

, , , &
Article: 2247178 | Received 10 Apr 2023, Accepted 08 Aug 2023, Published online: 12 Oct 2023

References

  • Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369–28. https://doi.org/10.1016/j.cor.2016.10.012
  • Amiri, A. (2006). Designing a distribution network in a supply chain system: Formulation and efficient solution procedure. European Journal of Operational Research, 171(2), 567–576. https://doi.org/10.1016/j.ejor.2004.09.018
  • An, K., & Ouyang, Y. (2016). Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium. Transportation Research Part E, 88(april), 110–128. https://doi.org/10.1016/j.tre.2016.01.009
  • Bendinelli, W. E., Su, C. T., Pera, T. G., & Caixeta-Filho, J. V. (2019). What are the main factors that determine post-harvest losses of grains? Sustainable Production and Consumption, 21, 228–238. https://doi.org/10.1016/j.spc.2019.09.002
  • Caixeta-Filho, J. V., & Pera, T. G. (2018). Post-harvest losses during the transportation of grains from farms to aggregation points. International Journal of Logs Economics & Globalisation, 7(3), 209–247. https://doi.org/10.1504/IJLEG.2018.093755
  • Cakar, B., Aydin, S., Varank, G., & Al, E. (2020). Assessment of environmental impact of FOOD waste in Turkey. Journal of Cleaner Production, 244, 118846. https://doi.org/10.1016/j.jclepro.2019.118846
  • Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., & Pant, D. (2015). Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources Conservation & Recycling, 101, 143–153. https://doi.org/10.1016/j.resconrec.2015.06.002
  • Cattaneo, A., Federighi, G., & Vaz, S. (2021). The environmental impact of reducing food loss and waste: A critical assessment. Food Policy, 98, 101890. https://doi.org/10.1016/j.foodpol.2020.101890
  • Chandrasekaran, M., & Rajesh, R. (2017). Modelling and optimisation of Indian traditional agriculture supply chain to reduce post-harvest loss and CO2 emission. Industrial Management & Data Systems, 117(9), 1817–1841. https://doi.org/10.1108/IMDS-09-2016-0383
  • Chatterjee, S. (2018). Storage infrastructure and agricultural yield: Evidence from a capital investment subsidy scheme. Economics, 12(1), 1–20. https://doi.org/10.5018/economics-ejournal.ja.2018-65
  • Chen, S. P., & Chen, C. Y. (2020). Dynamic markdown decisions based on a quality loss function in on-site direct-sale supply chains for perishable food. Journal of the Operational Research Society, 72(4), 822–836. https://doi.org/10.1080/01605682.2019.1705192
  • Chen, J. Y., Dimitrov, S., & Pun, H. (2019). The impact of government subsidy on supply chains’ sustainability innovation. Omega, 86, 42–58. https://doi.org/10.1016/j.omega.2018.06.012
  • Cheng, L. L., Yin, C. B., Hu, W. L., & Zhou, Y. (2011). Subsidy policy for agricultural nonpoint pollution control in northern area of Erhai Lake of Yunnan province. Agro-Environment & Development, 31(4), 471–474.
  • Chen, Y., Miao, J., & Zhu, Z. (2021). Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO 2 emissions. Journal of Cleaner Production, 318, 127934. https://doi.org/10.1016/j.jclepro.2021.128543
  • Chen, Y. H., Wen, X. W., Wang, B., & Nie, P. Y. (2017). Agricultural pollution and regulation: How to subsidize agriculture? Journal of Cleaner Production, 164(oct.15), 258–264. https://doi.org/10.1016/j.jclepro.2017.06.216
  • China, N. F. A. S. (2020). How to reduce post-production loss of grain June 27, 2022, from http://www.lswz.gov.cn/html/zt/kjhdz2021/2021-06/09/content_266101.shtml
  • Do Rosário Cameira, M., Rolim, J., Valente, F., Mesquita, M., Dragosits, U., & Cordovil, C. M. (2021). Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones. Agriculture, Ecosystems and Environment, 306, 107204. https://doi.org/10.1016/j.agee.2020.107204
  • Duan, C., Yao, F., Guo, X. E. A., Yu, H., & Wang, Y. (2022). The impact of carbon policies on supply chain network equilibrium: Carbon trading price, carbon tax and low-carbon product subsidy perspectives. International Journal of Logistics: Research & Applications, 1–25. https://doi.org/10.1080/13675567.2022.2122422
  • FAO. (2013). Food wastage footprint; impacts on natural resources (summary report), from http://www.fao.org/docrep/018/i3347e/i3347e.pdf
  • Gitonga, Z. M., Groote, H. D., Kassie, M., & Tefera, T. (2013). Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching. Food Policy, 43, 44–55. https://doi.org/10.1016/j.foodpol.2013.08.005
  • Gogh, B. V., Boerrigter, H., Noordam, M., Ruben, R., & Timmermans, T. (2017). Post-harvest loss reduction. Wageningen Food & Biobased Research.
  • Gunasekera, D., Parsons, H., & Smith, M. (2017). Post-harvest loss reduction in Asia-Pacific developing economies. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 303–317. https://doi.org/10.1108/JADEE-12-2015-0058
  • He, P., He, Y., & Xu, H. (2021). Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy. International Journal of Production Economics, 213, 108–123. https://doi.org/10.1016/j.ijpe.2019.03.013
  • Hengsdijk, H., & Boer, W. D. (2017). Post-harvest management and post-harvest losses of cereals in Ethiopia. Food Security, 9(5), 945–958. https://doi.org/10.1007/s12571-017-0714-y
  • Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. The Journal of Agricultural Science, 149(s1), 37–45. https://doi.org/10.1017/S0021859610000936
  • Huang, S., Fan, Z. P., & Wang, N. (2020). Green subsidy modes and pricing strategy in a capital-constrained supply chain. Transportation Research Part E: Logistics & Transportation Review, 136, 101885. https://doi.org/10.1016/j.tre.2020.101885
  • Huang, H., He, Y., & Li, D. (2018). Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration. Journal of Cleaner Production, 180, 280–296. https://doi.org/10.1016/j.jclepro.2018.01.152
  • Huber, R., Tarruella, M., & Hansen, J. W. E. A. (2023). Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects. Agricultural Systems, 207, 103639. https://doi.org/10.1016/j.agsy.2023.103639
  • Jiang, Y., Li, K., Chen, S. E. A., Fu, X., Feng, S., & Zhuang, Z. (2022). A sustainable agricultural supply chain considering substituting organic manure for chemical fertilizer. Sustainable Production and Consumption, 29, 432–446. https://doi.org/10.1016/j.spc.2021.10.025
  • Julian, P., Mark, B., & Sarah, M. (2018). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 365(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126
  • Kaminski, J., & Christiaensen, L. (2014). Post-harvest loss in sub-saharan Africa—what do farmers say? Global Food Security, 3(3–4), 149–158. https://doi.org/10.1016/j.gfs.2014.10.002
  • Khan, S. A. R., Ahmad, Z., Sheikh, A. A. E. A., & Yu, Z. (2022). Digital transformation, smart technologies, and eco-innovation are paving the way toward sustainable supply chain performance. Science Progress, 105(4), 1–26. https://doi.org/10.1177/00368504221145648
  • Khan, S. A. R., Tabish, M., & Zhang, Y. (2023). Embracement of industry 4.0 and sustainable supply chain practices under the shadow of practice-based view theory: Ensuring environmental sustainability in corporate sector. Journal of Cleaner Production, 398, 136609. https://doi.org/10.1016/j.jclepro.2023.136609
  • Khan, S. A. R., Zhang, Y., & Farooq, K. (2023). Green capabilities, green purchasing, and triple bottom line performance: Leading toward environmental sustainability. Business Strategy and the Environment, 32(4), 2022–2034. https://doi.org/10.1002/bse.3234
  • Kuiper, M., & Cui, H. D. (2021). Using food loss reduction to reach food security and environmental objectives - a search for promising leverage points. Food Policy, 98, 101915. https://doi.org/10.1016/j.foodpol.2020.101915
  • Li, S., He, Y., & Salling, M. (2021). Strategic rationing and freshness keeping of perishable products under transportation disruptions and demand learning. Complex & Intelligent Systems, 8(6), 1–15. https://doi.org/10.1007/s40747-021-00492-w
  • Li, H., Tang, M., & Cao, A. E. A. (2022). Assessing the relationship between air pollution, agricultural insurance, and agricultural green total factor productivity: Evidence from China. Environmental Science and Pollution Research, 29(52), 1–15. https://doi.org/10.1007/s11356-022-21287-7
  • Liu, P. (2019). Pricing policies and coordination of low-carbon supply chain considering targeted advertisement and carbon emission reduction costs in the big data environment. Journal of Cleaner Production, 210(FEB.10), 343–357. https://doi.org/10.1016/j.jclepro.2018.10.328
  • Liu, L., Ouyang, W., Liu, H., Zhu, J., Fan, X., Zhang, F., Ma, Y., Chen, J., Hao, F., & Lian, Z. (2021). Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development. Agriculture, Ecosystems & Environment, 308(3), 107238. https://doi.org/10.1016/j.agee.2020.107238
  • Li, B., Yin, T., Udugama, I. A., & Al, E. (2020). Food waste and the embedded phosphorus footprint in China. Journal of Cleaner Production, 252, 119909. https://doi.org/10.1016/j.jclepro.2019.119909
  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., & Luo, W. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77(april), 5–15. https://doi.org/10.1016/j.envint.2014.12.010
  • Lu, X., Ye, X., Zhou, M. E. A., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., & Zhang, Y. (2021). The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications, 12(1), 1–9. https://doi.org/10.1038/s41467-021-25147-9
  • Ma, S., He, Y., Gu, R. E. A., & Li, S. (2021). Sustainable supply chain management considering technology investments and government intervention. Transportation Research Part E: Logistics & Transportation Review, 149, 102290. https://doi.org/10.1016/j.tre.2021.102290
  • Majiwa, E., Lee, B. L., Wilson, C. E. A., Fujii, H., & Managi, S. (2018). A network data envelopment analysis (NDEA) model of post-harvest handling: The case of Kenya’s rice processing industry. Food Security, 10(3), 631–648. https://doi.org/10.1007/s12571-018-0809-0
  • Ma, X., Wang, J., Bai, Q., & Wang, S. (2019). Optimization of a three-echelon cold chain considering freshness-keeping efforts under cap-and-trade regulation in industry 4.0. International Journal of Production Economics, 220, 107457. https://doi.org/10.1016/j.ijpe.2019.07.030
  • Ma, W., Zhao, Z., & Ke, H. (2013). Dual-channel closed-loop supply chain with government consumption-subsidy. European Journal of Operational Research, 226(2), 221–227. https://doi.org/10.1016/j.ejor.2012.10.033
  • Meng, Q., Li, M., & Liu, W. E. A. (2021). Pricing policies of dual-channel green supply chain: Considering government subsidies and consumers’ dual preferences. Sustainable Production and Consumption, 26, 1021–1030. https://doi.org/10.1016/j.spc.2021.01.012
  • Mishra, R. K., Mohammad, N., & Roychoudhury, N. (2016). Soil pollution: Causes, effects and control. Van Sangyan, 3(1), 1–14.
  • Mogale, D. G., Kumar, S. K., & Tiwari, M. K. (2020). Green food supply chain design considering risk and post-harvest losses: A case study. Annals of Operations Research, 295(1), 257–284. https://doi.org/10.1007/s10479-020-03664-y
  • Nie, P. (2012). A monopoly with pollution emissions. Journal of Environmental Planning and Management, 55(6), 705–711. https://doi.org/10.1080/09640568.2011.622742
  • Nourbakhsh, S. M., Bai, Y., Maia, G., Ouyang, Y., & Rodriguez, L. (2016). Grain supply chain network design and logistics planning for reducing post-harvest loss. Biosystems Engineering, 151, 105–115. https://doi.org/10.1016/j.biosystemseng.2016.08.011
  • Olorunfemi, B. J., & Kayode, S. E. (2021). Post-harvest loss and grain storage technology- a review. Turkish Journal of Agriculture - Food Science & Technology, 9(1), 75–83. https://doi.org/10.24925/turjaf.v9i1.75-83.3714
  • Omotilewa, O. J., Jacob, R. G., Herbert, A. J., & Shively, G. E. (2018). Does improved storage technology promote modern input use and food security? Evidence from a randomized trial in Uganda. Journal of Development Economics, 135, 176–198. https://doi.org/10.1016/j.jdeveco.2018.07.006
  • Panchasara, H., Samrat, N. H., & Islam, N. G. G. E. (2021). Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review. Agriculture, 11(2), 11020085. https://doi.org/10.3390/agriculture11020085
  • Parris, K. (2011). Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects. International Journal of Water Resources Development, 27(1), 33–52. https://doi.org/10.1080/07900627.2010.531898
  • Peng, H., & Pang, T. (2019). Optimal strategies for a three-level contract-farming supply chain with subsidy. International Journal of Production Economics, 216, 274–286. https://doi.org/10.1016/j.ijpe.2019.06.011
  • Ps, A., Htb, A., Sm, A., & Lra, B. (2022). Biofertilization of biogas digestates: An insight on nutrient management, soil microbial diversity and greenhouse gas emission. New and Future Developments in Microbial Biotechnology and Bioengineering, 199–215. https://doi.org/10.1016/B978-0-323-85579-2.00002-2
  • Qiao, H., Zheng, F., Jiang, H., & Dong, K. (2019). The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Science of the Total Environment, 671(25), 722–731. https://doi.org/10.1016/j.scitotenv.2019.03.336
  • Ricker-Gilbert, J., & Jones, M. (2015). Does storage technology affect adoption of improved maize varieties in Africa? Insights from Malawi’s input subsidy program. Food Policy, 50, 92–105. https://doi.org/10.1016/j.foodpol.2014.10.015
  • Sazvar, Z., Rahmani, M., & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. Journal of Cleaner Production, 194, 564–583. https://doi.org/10.1016/j.jclepro.2018.04.118
  • Shuanwang, Q., Ziqun, W., Hongxia, X., Wuzhou, G., & Baoguo, M. (2022). Estimation and analysis of agricultural non-point source pollution in Handan of Haihe River Basin. Journal of Hebei University of Engineering, 39(2), 86–92.
  • Stathers, T., Holcroft, D., Kitinoja, L., Mvumi, B. M., English, A., Omotilewa, O., Kocher, M., Ault, J., & Torero, M. (2020). A scoping review of interventions for crop postharvest loss reduction in sub-saharan Africa and South Asia. Nature Sustainability, 3(10), 821–835. https://doi.org/10.1038/s41893-020-00622-1
  • Sun, L., Cao, X., Alharthi, M., Zhang, J., Taghizadeh-Hesary, F., & Mohsin, M. (2016). Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers - ScienceDirect. Journal of Cleaner Production, 264, 121664. https://doi.org/10.1016/j.jclepro.2020.121664
  • Tadesse, M. (2020). Post-harvest loss of stored grain, its causes and reduction strategies. Food Science and Quality Management, 96, 26–35. https://doi.org/10.7176/FSQM/96-04
  • Tonini, D., Albizzati, P. F., & Astrup, T. F. (2018). Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Management, 76, 744–766. https://doi.org/10.1016/j.wasman.2018.03.032
  • Vermeulen, S. J. C. B., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195–222. https://doi.org/10.1146/annurev-environ-020411-130608
  • Wang, W., Lin, W., & Cai, J. E. A. (2021). Impact of demand forecast information sharing on the decision of a green supply chain with government subsidy. Annals of Operations Research, 1–26. https://doi.org/10.1007/s10479-021-04233-7
  • Wikström, F., Williams, H., & Venkatesh, G. (2016). The influence of packaging attributes on recycling and food waste behaviour–an environmental comparison of two packaging alternatives. Journal of Cleaner Production, 137, 895–902. https://doi.org/10.1016/j.jclepro.2016.07.097
  • Zhang, J. B. (2023). Improving inherent soil productivity underpins agricultural sustainability. Pedosphere, 33(1), 3–5. https://doi.org/10.1016/j.pedsph.2023.01.007
  • Zhang, C., Liu, S., Wu, S., Jin, S., Reis, S., Liu, H., & Gu, B. (2019). Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resources Conservation & Recycling, 144, 65–73. https://doi.org/10.1016/j.resconrec.2019.01.011
  • Zhang, R., Ma, W., & Liu, J. (2020). Impact of government subsidy on agricultural production and pollution: A game-theoretic approach. Journal of Cleaner Production, 285, 124806. https://doi.org/10.1016/j.jclepro.2020.124806
  • Zorya, S., Morgan, N., & Dia, Z. R. L. E. (2011). Missing food: The case of postharvest grain losses in Sub-Saharan Africa. The World Bank.