447
Views
0
CrossRef citations to date
0
Altmetric
ANIMAL HUSBANDRY & VETERINARY SCIENCE

Dietary full-fat Stinkbug (Encosternum delegorguei) meal effects on growth performance, blood chemistry, liver and intestinal histology of juvenile Mozambique tilapia (Oreochromis mossambicus)

, &
Article: 2253717 | Received 17 May 2023, Accepted 28 Aug 2023, Published online: 18 Sep 2023

References

  • Abdel-Tawwab, M., Khalil, R. H., Metwally, A. A., Shakweer, M. S., Khallaf, M. A., & Abdel-Latif, H. M. R. (2020). Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hematobiochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 522, 735136. Article 735136. https://doi.org/10.1016/j.aquaculture.2020.735136
  • Adeoye, A. A., Akegbejo-Samsons, Y., Fawole, F. J., & Davies, S. J. (2020). Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. Journal of the World Aquaculture Society, 51(4), 1024–17. https://doi.org/10.1111/jwas.12691
  • Akinwole, A. O., Dauda, A. B., & Ogunkunle, V. O. (2020). Growth performance, nutrient utilization, survival and body indices of African catfish (Clarias gariepinus, Burchell 1822) reared on maggot meal based diet. FUDMA Journal of Sciences, 4(2), 53–59. https://doi.org/10.33003/fjs-2020-0402-109
  • Alfiko, Y., Xie, D., Astuti, R. T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries, 7(2), 166–178. https://doi.org/10.1016/j.aaf.2021.10.004
  • Anvo, M. P. M., Aboua, B. R. D., Compaoré, I., Siaaao, R., Zoungrana-Kaboré, C. Y., Kouamelan, E. P., & Toguyéni, A. (2017). Fish meal replacement by Cirina butyrospermi caterpillar’s meal in practical diets for Clarias gariepinus fingerlings. Aquaculture Research, 48(10), 5243–5250. https://doi.org/10.1111/are.13337
  • AOAC International. (2003). Official methods of analysis of AOAC International (17th ed.). Gaithersburg, MD, USA, Association of Analytical Communities.
  • Baeza-Arińo, R., Martĩnez-Llorens, S., Nogales-Merida, S., Jover-Cerda, M., & Tomas-Vidal, A. (2014). Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrate. Aquaculture Research, 47(2), 460–471. https://doi.org/10.1111/are.12507
  • Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagobo, R., & Krogdahl, E. L. (2018). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609–619. https://doi.org/10.1016/j.aquaculture.2018.12.032
  • Bruni, L., Pastorelli, R., Viti, C., Gasco, L., & Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487, 56–63. https://doi.org/10.1016/j.aquaculture.2018.01.006
  • Cho, J., Bae, J., & Hwang, I. (2022). Effects of black soldier fly (Hermetia illucens) pre-pupae meal on the growth, stress, and immune responses of juvenile rainbow trout (Oncorhynchus mykiss) reared at different stocking densities. Aquaculture Reports, 25, Article ID 101202.
  • Cho, C. Y., Slinger, S. J., & Bayley, H. S. (1982). Bioenergetics of salmonid fishes energy intake, expenditure and productivity. Comparative Biochemistry and Physiology, 73(1), 25–41. https://doi.org/10.1016/0305-0491(82)90198-5
  • Coutinho, F., Castro, C., Guerreiro, I., Rangel, F., Couto, A., Serra, C. R., Peres, H., Pousão-Ferreira, P., Rawski, M., Oliva-Teles, A., & Enes, P. (2021). Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture 535, 736362. Article 736362. https://doi.org/10.1016/j.aquaculture.2021.736362
  • Devic, E., Leschen, W., Murray, F., & Little, D. C. (2017). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing black soldier fly (Hermetia illucens) larvae meal. Aquaculture Nutrition, 24(1), 416–423. https://doi.org/10.1111/anu.12573
  • Djissou, A. S. M., Adjahouinou, D. C., Koshio, S., & Fiogbe, E. D. (2016). Complete replacement of fish meal by other animal protein sources on growth performance of Clarias gariepinus fingerlings. International Aquatic Research, 8(4), 333–341. https://doi.org/10.1007/s40071-016-0146-x
  • Elia, A. C., Capucchio, M. T., Caldaroni, B., Magara, G., Dörr, A. J. M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A., & Gasco, L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496, 50–57. https://doi.org/10.1016/j.aquaculture.2018.07.009
  • El-Sayed, A. F. M. (2020). Tilapia culture (2nd ed.). Academic Press.
  • Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadara, S. O., & Ganiyu, I. O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 518, 734849. Article 734849. https://doi.org/10.1016/j.aquaculture.2019.734849
  • Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology, 26(2), 105–115. https://doi.org/10.1002/zoo.20123
  • Fischer, H., Romano, N., Renukdas, N., Kumar, V., & Sinha, A. K. (2022). Comparing black soldier fly (Hermetia illucens) larvae versus prepupae in the diets of largemouth bass, Micropterus salmoides: Effects on their growth, biochemical composition, histopathology, and gene expression. Aquaculture 546, 737323. Article 737323. https://doi.org/10.1016/j.aquaculture.2021.737323
  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Gai, F., Cusimano, G. M., Maricchiolo, G., Caccamo, L., Caimi, C., Macchi, E., Meola, M., Perdichizzi, A., Tartarisco, G., & Gasco, L. (2023). Defatted black soldier fly meal in diet for grow-out gilthead seabream (Sparus aurata L. 1758): Effects on growth performance, Gill Cortisol level, digestive enzyme activities, and intestinal histological structure. Aquaculture Research, ID, 3465335. https://doi.org/10.1155/2023/3465335
  • Gbai, M., Ouattara, N., Bamba, Y., Ouattara, M., Ouattara, A., & Yao, K. (2019). Substitution of the fishmeal by maggot meal in the feed of Nile tilapia Oreochromis niloticus at different stages of growth. International Journal of Fisheries and Aquaculture Research, 5(4), 25–39. . www.eajournals.org
  • Guerreiro, I., Serra, C. R., Coutinho, F., Couto, A., Castro, C., Rangel, F., Pres, H., Pousão-Ferreira, P., Matos, E., Gasco, L., Gai, F., Olivia-Teles, A., & Enes, P. (2020). Digestive enzyme activity and nutrient digestibility in meagre (Argyrosomus regius) fed increasing levels of black soldier fly meal (Hermetia illucens). Aquaculture Nutrition, 27(1), 142–152. https://doi.org/10.1111/anu.13172
  • Gu, J., Liang, H., Ge, X., Xia, D., Pan, L., Mi, H., & Ren, M. (2022). A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish and Shellfish Immunology, 120, 214–221. https://doi.org/10.1016/j.fsi.2021.11.024
  • Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1–22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
  • Henry, M. A., Golomazou, E., Asimaki, A., Psofakis, P., Fountoulaki, E., Mente, E., Rumbos, C. I., Athanassiou, C. G., & Karapanagiotidis, I. T. (2022). Partial dietary fishmeal replacement with full-fat or defatted superworm (Zophobas morio) larvae meals modulates the innate immune system of gilthead seabream, Sparus aurata. Aquaculture Reports, 27, Article 101347.
  • Hlophe-Ginindza, S. N., Moyo, N. A. G., & Ngambi, J. W. (2015). The effect of exogenous enzyme supplementation on growth and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research, 47(12), 3777–3787. https://doi.org/10.1111/are.12828
  • Hua, K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 530, 735732. Article 735732. https://doi.org/10.1016/j.aquaculture.2020.735732
  • Hu, Y., Huang, Y., Tang, T., Zhong, L., Chu, W., Dai, Z., Chen, Hu, Y., & Chen, K. (2020). Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus). Aquaculture Reports 17, 100345. Article 100345. https://doi.org/10.1016/j.aqrep.2020.100345
  • Inje, O. F., Olufunmilayo, A. H., Audu, J. A., Ndaman, S. A., & Chidi, E. E. (2018). Protein quality of four indigenous edible insect species in Nigeria. Food Science and Human Wellness, 7(2), 175–183. https://doi.org/10.1016/j.fshw.2018.05.003
  • Ishida, Y., Fujita, T., & Asai, K. (1981). New detection and separation method for amino acids by high-performance liquid chromatography. Journal of Chromatography A, 204, 143–148. https://doi.org/10.1016/S0021-9673(00)81650-7
  • Jabir, A. R., Razak, S. A., & Vikineswary, S. (2012). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology, 11(24), 6592–6598. https://doi.org/10.5897/AJB11.1084
  • Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1), 12. https://doi.org/10.1186/s41240-020-00158-7
  • Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current Gastroenterology Reports, 12(5), 319–330. https://doi.org/10.1007/s11894-010-0131-2
  • Kishawy, A. T. Y., Mohammed, H. A., Zaglool, A. W., Attia, M. S., Hassan, F. A. M., Roushdy, E. M., Ismail, T. A., & Ibrahim, D. (2022). Partial defatted black solider larvae meal as a promising strategy to replace fish meal protein in diet for Nile tilapia (Oreochromis niloticus): Performance, expression of protein and fat transporters, and cytokines related genes and economic efficiency. Aquaculture 555, 738195. Article 738195. https://doi.org/10.1016/j.aquaculture.2022.738195
  • Llagostera, P. F., Kallas, Z., Reig, L., & Amores de Gea, D. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10–21. https://doi.org/10.1016/j.jclepro.2019.05.012
  • Madibana, M. J., Mwanza, M., Lewis, B. R., Fouché, C. H., Toefy, R., & Mlambo, V. (2020). Black soldier fly larvae meal as a fishmeal substitute in juvenile dusky kob diets: Effect on feed utilization, growth performance, and Blood parameters. Sustainability, 12(22), 9460. https://doi.org/10.3390/su12229460
  • Makkar, H. P. S., Tran, G., Heuze, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  • Makore, T. A., Garamumhango, P., Chirikure, T., & Chikambi, S. D. (2015). Determination of nutritional composition of Encosternum delegorguei caught in Nerumedzo community of Bikita, Zimbabwe. International Journal of Biology, 7(4), 4. https://doi.org/10.5539/ijb.v7n4p13
  • Manditsera, F. A., Luning, P. A., Fogliano, V., & Lakemond, C. M. M. (2019). The contribution of wild harvested edible insects (Eulepida mashona and Henicus whellani) to nutrition security in Zimbabwe. Journal of Food Composition and Analysis, 75, 17–25. https://doi.org/10.1016/j.jfca.2018.09.013
  • McFadzen, I. R. B., Coombs, S. H., & Halliday, N. C. (1997). Histological indices of the nutritional condition of sardine, Sardina pilchardus (walbaum) larvae of the north coast of Spain. Journal of Experimental Marine Biology and Ecology, 212(2), 239–258. https://doi.org/10.1016/S0022-0981(96)02755-4
  • Mohan, K., Rajan, D. K., Muralisankar, T., Ganesan, A. R., Sathishkumar, P., & Revathi, N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 553, 738095. Article 738095. https://doi.org/10.1016/j.aquaculture.2022.738095
  • Muin, H., & Taufek, N. M. (2022). Evaluation of growth performance, feed efficiency and nutrient digestibility of red hybrid tilapia fed dietary inclusion of black soldier fly larvae (Hermetia illucens). Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2022.09.006
  • Nyuliwe, T. C., Mlambo, V., Madibana, M. J., Mwanza, M., & Wokadala, O. C. (2022). Partial substitution of fishmeal with mopane worm meal in dusky kob fingerling (Argyrosomus japonicus) diets: Feed utilization, digestive enzyme activity, Blood parameters, and growth performance. Aquaculture Journal, 2(2), 59–71. https://doi.org/10.3390/aquacj2020006
  • Parmar, T. P., Kindinger, A. L., Mathieu-Resuge, M., Twining, C. W., Shipley, J. R., Kainz, M. J., & Martin-Creuzburg, D. (2022). Fatty acid composition differs between emergent aquatic and terrestrial insects-A detailed single system approach. Frontiers in Ecology and Evolution, 10. Article 952292. https://doi.org/10.3389/fevo.2022.952292
  • Prachom, N., Boonyoung, S., Hassaan, M. S., El-Haroun, E., & Davies, S. J. (2021). Preliminary evaluation of superworm (Zophobas morio) larval meal as a partial protein source in experimental diets for juvenile Asian sea bass, lates calcarifer. Aquaculture Nutrition, 27(5), 1-1304–1314. https://doi.org/10.1111/anu.13269
  • Rapatsa, M. M., & Moyo, N. A. G. (2017). Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquaculture Reports, 5, 18–26. https://doi.org/10.1016/j.aqrep.2016.11.004
  • Rapatsa, M. M., & Moyo, N. A. G. (2019). Enzyme activity and histological analysis of Clarias gariepinus fed on Imbrasia belina meal used for partial replacement of fishmeal. Fish Physiology and Biochemistry, 45(4), 1309–1320. https://doi.org/10.1007/s10695-019-00652-3
  • Rapatsa, M. M., Moyo, N. A. G. (2022). A review and meta-analysis of the effects of Replacing fishmeal with insect meals on growth of tilapias and sharptooth catfish. Aquaculture Nutrition 2022, 1–10. Article 9367587. https://doi.org/10.1155/2022/9367587
  • Rašković, B. S., Stanković, M. B., Marković, Z. Z., & Poleksić, V. D. (2011). Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences, 56(1), 87–100. https://doi.org/10.2298/JAS1101087R
  • Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M. T., Biasato, I., Biasibetti, E., De Marco, M., Brugiapaglia, A., Zoccarato, I., & Gasco, L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss walbaum) diets. Journal of Animal Science and Biotechnology, 8(1). Article 57. https://doi.org/10.1186/s40104-017-0191-3
  • Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1–11. https://doi.org/10.1016/j.ifset.2012.11.005
  • Sagun, S., Collins, E., Martin, C., Nolan, E. J., & Horzempa, J. (2016). Alarm odor compounds of the brown marmorated stink bug exhibit antibacterial activity. Journal of Pharmacognosy and Natural Products, 2(3), 119. https://doi.org/10.4172/2472-0992.1000119
  • Saleh, H. H. E. (2020). Effect of feeding on fresh (wet) housefly maggots (Musca domestica) with or without Artificial diet on water Quality and growth Rates of African catfish (Clarias gariepinus Burchell, 1822) fry under laboratory conditions. Journal of Zoological Research, 2(2). https://doi.org/10.30564/jzr.v2i2.2053
  • Santiago, C. B., & Lovell, R. T. (1988). Amino acid requirements for growth of Nile tilapia. Journal of Nutrition, 188(12), 1540–1546. https://doi.org/10.1093/jn/118.12.1540
  • Teffo, L. S., Toms, R. B., & Eloff, J. N. (2007). Preliminary data on the nutritional composition of the composition of the edible stink-bug, ncosternum delegorguei Spinola, consumed in Limpopo province, South Africa. South African Journal of Science, 103, 434–436. https://hdl.handle.net/10520/EJC96630
  • Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1). Article 30. https://doi.org/10.1186/s40104-021-00551-9
  • Tippayadara, N., Dawood, M. A. O., Krutmuang, P., Hoseinifar, S. H., Doan, H. V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11(1), 193. https://doi.org/10.3390/ani11010193
  • Tran, H. Q., Prokešová, M., Zare, M., Matoušek, J., Ferrocino, I., Gasco, L., & Stejskal, V. (2022). Production performance, nutrient digestibility, serum biochemistry, fillet composition, intestinal microbiota and environmental impacts of European perch (Perca fluviatilis) fed defatted mealworm (Tenebrio molitor). Aquaculture 547, 737499. Article 737499. https://doi.org/10.1016/j.aquaculture.2021.737499
  • Tschirner, M., & Simon, A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Journal of Insects as Food and Feed, 1(4), 249–259. https://doi.org/10.3920/JIFF2014.0008
  • Twining, C. W., Brenna, J. T., Lawrence, P., Shipley, J. R., Tollefson, T. N., & Winkler, D. W. (2016). Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proceedings of the National Academy of Sciences, 113(39), 10920–10925. https://doi.org/10.1073/pnas.1603998113
  • van Dyk, J. C., & Pieterse, G. M. (2008). A histo-morphological study of the testis of the sharptooth catfish (Clarias gariepinus) as reference for future toxicological assessments. Journal of Applied Ichthyology, 24(4), 415–422. https://doi.org/10.1111/j.1439-0426.2008.01127.x
  • van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58(1), 563–583. https://doi.org/10.1146/annurev-ento-120811-153704
  • van Huis, A. (2022). Edible insects: Challenges and prospects. Entomological Research, 52(4), 161–177. https://doi.org/10.1111/1748-5967.12582
  • van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., & Zhang, J. (2018). Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research, 49(4), 1–9. https://doi.org/10.1111/are.13611
  • Zarantoniello, M., Randazzo, B., Secci, G., Notarstefano, V., Giorgini, E., Lock, E. J., Parisi, G., & Olivotto, I. (2021). Application of laboratory methods for understanding fish responses to black soldier fly (Hermetia illucens) based diets. Journal of Insects as Food and Feed, 8(11), 1173–1195. https://doi.org/10.3920/JIFF2020.0135