1,824
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Biochar and its effects on soil properties and evapotranspiration: A sustainable solution for plant growth

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2256136 | Received 21 Jun 2023, Accepted 03 Sep 2023, Published online: 12 Sep 2023

References

  • Abagandura, G. O., Bansal, S., Karsteter, A., & Kumar, S. (2021). Soil greenhouse gas emissions, organic carbon and crop yield following Pinewood biochar and biochar–manure applications at eroded and depositional landscape positions: A field trial in. Soil Use Manag. https://doi.org/10.1111/sum.12760
  • Abbruzzini, T. F., Davies, C. A., Toledo, F. H., & Cerri, C. E. P. (2019). Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical Wheat-growing Season. Journal of Environmental Management, 252, 109638. https://doi.org/10.1016/j.jenvman.2019.109638
  • Abiven, S., Schimdt, M. W. I., & Lehmann, J. (2014). Biochar by design. Nature Geoscience, 7(5), 326–27. https://doi.org/10.1038/ngeo2154
  • Abrishamkesh, S., Gorji, M., Asadi, H., GH, B.-M., & P, A. A. (2016). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant Soil Environment, 61(11), 475–482. https://doi.org/10.17221/117/2015-pse
  • Accardi-Dey, A., & Gschwend, P. M. (2002). Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science & Technology, 36(1), 21–29. https://doi.org/10.1021/es010953c
  • Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., & Ayeni, J. F. (2020). Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical Sandy Loam Alfisol. Scientific World Journal, 2020, 1–9. https://doi.org/10.1155/2020/9391630
  • Adnan, M., Asif, M., Bilal, H. M., Rehman, B., Adnan, M., Ahmad, T., Rehman, H., Anjum, M. Z. O., & Fertilizer, I. (2020). Integral part crop prod. Rev Artic EC Agric, 6(3), 1–7. https://www.researchgate.net/profile/Muhammad-Asif-71/publication/342709611_Organic_and_Inorganic_Fertilizer_Integral_Part_for_Crop_Production/links/5f03144e45851550508dbec0/Organic-and-Inorganic-Fertilizer-Integral-Part-for-Crop-Production.pdf
  • Ahmed, R., Li, Y., Mao, L., Xu, C., Lin, W., Ahmed, S., & On MNL, A. W. (2019). Moisture content, and evapotranspiration after 15N urea fertilization for vegetable crop. Agronomy, 9(6), 331–. https://doi.org/10.3390/agronomy9060331
  • Ali, I., Adnan, M., Ullah, S., Zhao, Q., Iqbal, A., He, L., Cheng, F., Muhammad, I., Ahmad, S., & Wei, S. (2022). Biochar combined with nitrogen fertilizer: A practical approach for increasing the biomass digestibility and yield of Rice and Promoting Food and Energy security. Biofuels Bioprod Biorefining Biofpr, 16(5), 1304–1318. https://doi.org/10.1002/bbb.2334
  • Alkharabsheh, H. M., Battaglia, S. M. F., S, M. L., J, A., & RS, A. B. A. (2011). Biochar and its broad impacts in soil quality and fertility. Nutrient Leaching and Bioavailability and Phytotoxicity of Heavy Metals Plant Soil, 348(1–2), 439–451. https://doi.org/10.1007/s11104-011-0948-y
  • Amoakwah, E., Arthur, E., Frimpong, K. A., Lorenz, N., Rahman, M. A., Nziguheba, G., & Islam, K. R. (2022). Biochar amendment impacts on microbial community structures and biological and enzyme activities in a weathered tropical sandy loam. Applied Soil Ecology, 172(104364), 104364. Internet. https://doi.org/10.1016/j.apsoil.2021.104364
  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 33(1–2), 1–18. https://doi.org/10.1007/s11104-010-0464-5
  • Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water holding capacity of Sandy soils. Global Change Biology Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.12026
  • Bayer, P., Heuer, E., Karl, U., & Finkel, M. (2005). Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies. Water Research, 39(9), 1719–1728. https://doi.org/10.1016/j.watres.2005.02.005
  • Bedassa, M. (2020). Soil acid management using Biochar: Review. International Journal of Agricultural Science and Food Technology, 6, 211–217. https://doi.org/10.17352/2455-815X.000076
  • Bird, M. I., Ascough, P. L., Young, I. M., Wood, C. V., & Scott, A. C. (2008). X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, 35(10), 2698–2706. https://doi.org/10.1016/j.jas.2008.04.018
  • Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687. https://doi.org/10.2136/sssaj2017.01.0017
  • Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Effect of organic residues and their derived biochars on the zinc and copper chemical fractions and some chemical properties of a calcareous soil. Communications in Soil Science & Plant Analysis, 51(13), 1725–1735. https://doi.org/10.1080/00103624.2020.1798986
  • Břendová, K., Zemanová, V., Pavlíková, D., & Tlustoš, P. (2016). Tlustoš utilization of biochar and activated carbon to reduce cd. Journal of Environmental Management, 181, 637–645. https://doi.org/10.1016/j.jenvman.2016.06.042
  • Brewer, C. E. (2012). Biochar characterization and enigneering. https://doi.org/10.31274/ETD-180810-2233
  • Brewer, R. (1965). Fabric and mineral analysis of soils. Soil Science, 100(1), 73. https://doi.org/10.1097/00010694-196507000-00024
  • Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, E. L., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. BiomassBioenergy, 66, 176–185. https://doi.org/10.1016/j.biombioe.2014.03.059
  • Brewer, C. E., Schmidt-Rohr, K., & Satrio, J. R. C. (2009). Brown characterization of biochar from fast pyrolysis and gasification Systems Environ Prog Sustain Energy. Environmental Progress & Sustainable Energy, 28(3), 386–396. https://doi.org/10.1002/ep.10378
  • Brown, R., Campo, B., Boateng, A. A., Garcia-Perez, M., & Masek, O. (2015). Fundamentals of biochar production. In J. Lehmann & S. Joseph, (Eds.), Biochar for environmental management (p. 40). Science, Technology and Implementation.
  • Brown, T. R., Wright, M. M., & Brown, R. C. (2010). Estimating profitability of two biochar production scenarios: Slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Biorefin-Ing, 5(1), 54–68. https://doi.org/10.1002/bbb.254
  • Bruun, E. W., Müller-Stöver, D., Pedersen, B. N., Hansen, L. V., & Petersen, C. T. (2022). Ash and biochar amendment of coarse sandy soil for growing crops under drought conditions. Soil Use and Management, 38(2), 1280–1292. https://doi.org/10.1111/sum.12783
  • Certificate, E. B. (2017). European biochar Foundation—European biochar certificate—guidelines for a sustainable production of biochar; version 6.3E of August 14, 2017. European Biochar Certificate.
  • Chan, K. Y., Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437–444. https://doi.org/10.1071/SR08036
  • Cheah, S., Jablonski, W. S., Olstad, J. L., Carpenter, D. L., Barthelemy, K. D., Robichaud, D. J., Andrews, J. C., Black, S. K., Oddo, M. D., & Westover, T. L. (2016). Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition. Green Chemistry: An International Journal and Green Chemistry Resource: GC, 18(23), 6291–6304. https://doi.org/10.1039/C6GC01661H
  • Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1(1), 75–87. https://doi.org/10.1007/s42773-019-00008-3
  • Chen, C., Wang, R., Shang, J., Liu, K., Irshad, M. K., Hu, K., & Arthur, E. (2018). Effect of biochar application on hydraulic properties of Sandy Soil under dry and wet conditions. Vadose Zone Journal, 17(1), 1–8. https://doi.org/10.2136/vzj2018.05.0101
  • Cornelissen, G., Jubaedah, N., NL, H., SE, M., V, S., & L M, J. (2018). Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment, 634, 561–568. https://doi.org/10.1016/j.scitotenv.2018.03.380
  • Cross, A., & Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology & Biochemistry, 43(10), 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.016
  • Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy Fuels, 18(2), 590–598. https://doi.org/10.1021/ef034067u
  • Das, O., & Sarmah, A. K. (2015). The love–hate relationship of pyrolysis biochar and water: A perspective. Science of the Total Environment, 512-513, 682–685. https://doi.org/10.1016/j.scitotenv.2015.01.061
  • Deluca, T. H., Mackenzie, M. D., & Gundale, M. J. (2009). Biochar effects on soil nutrient transformations.
  • Diatta, A. A., Fike, J. H., Battaglia, M. L., Galbraith, J., & Baig, M. B. (2020). Effects of biochar on soil fertility and crop productivity in Arid regions: A review. Arabian Journal of Geosciences, 13(14), 595. https://doi.org/10.1007/s12517-020-05586-2
  • Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 15(8), 3539–3551. https://doi.org/10.1016/j.rser.2011.05.010
  • EL-Gamal, A., K, G. B., & E-K, N. E. (2020). In: IMPACT of SULPHUR and BIOCHAR APPLICATIONS on SOIL PROPERTIES and PRODUCTIONS of WHEAT and SOYBEAN YIELDS in SOILS HAVING TEXTURE (p. 256). Menoufia Journal of Soil Sciences.
  • El-Naggar, A. H., Usman, A. R. A., Al-Omran, A., Ok, Y. S., Ahmad, M., & Al-Wabel, M. I. (2015). Carbon mineralization and nutrient availability in calcareous sandy soils amended with Woody Waste Biochar. Chemosphere, 138, 67–73. https://doi.org/10.1016/j.chemosphere.2015.05.052
  • Faloye, O. T., Alatise, M. O., Ajayi, A. E., & Ewulo, B. S. (2019). Effects of biochar and Inor-Ganic Fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217, 165–178. https://doi.org/10.1016/j.agwat.2019.02.044
  • Fearnside, P. M. (2005). Do hydroelectric dams mitigate global warming? The case of Brazil’s curuá-una dam. Mitigation and Adaptation Strategies for Global Change, 10, 675–691. https://doi.org/10.1007/s11027-005-7303-7
  • Fischer, B. M. C., Manzoni, S., Morillas, L., Garcia, M., Johnson, M. S., & Lyon, S. W. (2019). Improving agricultural water use efficiency with biochar – a Synthesis of biochar effects on water storage and fluxes across scales. The Science of the Total Environment, 657, 853–862 11 312. https://doi.org/10.1016/j.scitotenv.2018.11.312
  • Gao, M., Yang, J., Liu, C., Gu, B., Han, M., Li, J., Li, N., Liu, N., An, N., Dai, J., Liu, X., & Han, X. (2021). Effects of long-term biochar and biochar-based fertilizer application on brown earth soil bacterial communities. Agriculture, Ecosystems & Environment, 309, 107285. https://doi.org/10.1016/j.agee.2020.107285
  • Githinji, L. (2013). Effect of biochar application rate on soil physical and hydraulic properties of a Sandy Loam. Archives of Agronomy & Soil Science, 60(4), 457–470. https://doi.org/10.1080/03650340.2013.821698
  • Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of Sandy soil. Geoderma, 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028
  • Glaser, B., & Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio. Geochimica et cosmochimica acta, 82, 39–51. https://doi.org/10.1016/j.gca.2010.11.029
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & D, H. Y. (2015). Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59. https://doi.org/10.1016/j123
  • Guo, K., Zhao, Y., Liu, Y., Chen, J., Wu, Q., Ruan, Y., Li, S., Shi, J., Zhao, L., & Sun, X. (2020). Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil.2020. Geoderma [Internet, 363(114162), 114162. https://doi.org/10.1016/j.geoderma.2019.114162
  • Gwenzi, W., Chaukura, N., Mukome, F. N., Machado, S., & Nyamasoka, B. (2015). Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150, 250–261. https://doi.org/10.1016/j.jenvman.2014.11.027
  • Han, C., Chen, F., Lian, C., Liang, R., Liang, W., Chen, M., Luo, A., & Gao, T. (2020). Development of preparation method and application of biochar. International Journal of Emerging Technology & Advanced Engineering, 10(9), 6–13. https://doi.org/10.46338/IJETAE0920_02
  • Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., Ever-Shed, R. P., Kogel-Knabner, I., Leeuw, J. W., Littke, R., Michaelis, W., & Rullkötter, J. (2000). Rullkotter.Rullkotter.Rullkotter.Rullkotter.The molecular-ly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31(10), 945–958. https://doi.org/10.1016/S0146-6380(00)00096-6
  • Herath, H. M. S. K., Arbestain, M. C., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an Andisol. Journal Geoderma, 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016
  • Hunt, J., DuPonte, M., Sato, D., & Kawabata, A. (2010). The basics of Biochar: A natural soil amend-ment. Soil Crop Manag, 30(7), 1–6. https://www.ctahr.hawaii.edu/oc/freepubs/pdf/scm-30.pdf
  • Hu, T., Wei, J., Du, L., Chen, J., & Zhang, J. (2023). The effect of biochar on nitrogen availability and bacterial community in farmland. Annals of Microbiology, 73. https://doi.org/10.1186/s13213-022-01708-1
  • Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., & Buchkina, N. P. (2018). Can a single dose of biochar affect selected soil physical and chemical characteristics? Journal of Hydrology and Hydromechanics, 66(4), 421–428. https://doi.org/10.2478/johh-2018-0034
  • JD, S., G, B., & PC, C. (2019). Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy (Basel, 9(4), 165. https://doi.org/10.3390/agronomy9040165
  • Jeffery, S., Verheijen, F. G. A., Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soil on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015
  • Jeyasubramanian, K., Thangagiri, B., Sakthivel, A., Dhaveethu Raja, J., Seenivasan, S., & Val-Linayagam, P. (2021). A complete review on Biochar: Production, property, multi-faceted applications. Interact Mech Comput Approach Fuel, 292, 120243. https://doi.org/10.1016/j.fuel.2021.120243
  • Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233. https://doi.org/10.1016/j.catena.2013.06.021
  • Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts, 6(4), 292–322. https://doi.org/10.1016/j.jobab.2021.03.003
  • Kaltschmitt, M., Hartmann, H., & Hofbauer, H. (2009). Energie Aus Biomasse-Grundlagen ( [place unknown]). Techniken und Verfahren;Springer. https://doi.org/10.1007/978-3-540-85095-3
  • Kameyama, K., Miyamoto, T., Iwata, Y., & Shiono, T. (2016). Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Science, 181, 20–28. https://doi.org/10.1097/SS.0000000000000123
  • Karaosmanoglu, F., Isigigur-Ergundenler, A., & Sever, A. (2000). Biochar from the straw-stalk of rapeseed plant. Energy Fuels, 14(2), 336–339. https://doi.org/10.1021/ef9901138
  • Karhu, K., Mattila, T., Bergstrom, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005
  • Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20(2), 450–459. https://doi.org/10.1007/s42729-019-00129-5
  • Keiluweit, M., Nico, P. S., & Johnson, M. M. (2010). Kleber Dynamic Molecular structure of Plant Bi-Omass-derived black carbon (Biochar. Environmental Science & Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419
  • Kern, D. C., Lima, H. P., Costa, J. A., Lima, H. V., Browne Ribeiro, A., Moraes, B. M., & Kämpf, N. (2017). Terras pretas: Approaches to formation processes in a new paradigm. Geoarchaeology, 32(6), 694–706. https://doi.org/10.1002/gea.21647
  • Khanmohammadi, Z., Afyuni, M., & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research, 33(3), 275–283. https://doi.org/10.1177/0734242x14565210
  • Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilisation of biochar and Green manure in soil with different organic carbon contents. Soil Research, 48(7), 577–585. https://doi.org/10.1071/SR10036
  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43. https://doi.org/10.1016/j.biombioe.2012.01.033
  • Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012
  • Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 1–14. https://doi.org/10.3389/fchem.2018.00026
  • Lee, M.-H., Lin, H.-H., & Jien, S.-H. (2022). Effects of biochar application on vegetation growth, cover, and erosion potential in sloped cultivated soil derived from mudstone. Processes (Basel), 10(2), 306. Internet. https://doi.org/10.3390/pr10020306
  • Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144. https://doi.org/10.1038/447143a
  • Lehmann, J. (2009). Terra preta Nova – where to from here? In Amazonian dark earths: Wim Sombroek’s vision (Vol. 28, pp. 473–486). Steiner. https://doi.org/10.1007/978-1-4020-9031-8_28
  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Bio-char for Environmental Management Science and Technology (p. 4). Earthscan.
  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science ( place unknown). Technology and Implementation; Routledge. https://doi.org/10.4324/9780203762264
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. B. (2011). Biochar effects on soil biota – a review. Effects on Soil Biota–A Review Soil Biol Biochem, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  • Lehmann, J., & Rondon, M. (2006). Bio-char soil Management on highly weathered soils in the humid tropics. In Biological approaches to sustainable soil systems (pp. 517–529). CRC Press. https://doi.org/10.1201/9781420017113.ch36
  • Lei, O., & Zhang, R. (2013). Effects of biochars derived from different feedstocks and Pyrol-Ysis temperatures on soil physical and hydraulic properties. Journal of Soils & Sediments, 13(9), 1561–1572. https://doi.org/10.1007/s11368-013-0738-7
  • Lentz, R. D., Ippolito, J. A., & Lehrsch, G. A. (2019). Biochar, manure, and sawdust alter long-term water retention dynamics in degraded soil. Soil Science Society of America Journal, 83, 1491–1501. https://doi.org/10.2136/sssaj2019.04.0115
  • Lewandowski, W., Radziemska, M., Ryms, E., & Ostrowski, P. (2010). Nowoczesne metody termochemiczne konwersji biomasy w paliwa gazowe, ciekłe i stałe. Proc ECOpole, 4(2), 453–547. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-90284eb4-41e7-43b5-8722-71bf6469aa31
  • Li, S., Li, Z., Feng, X., Zhou, F., Wang, J., & Li, Y. (2021). Effects of biochar additions on the soil chemical properties, bacterial community structure and rape growth in an acid purple soil. Plant Soil Environment, 67, 121–129. https://doi.org/10.17221/390/2020-pse
  • Li, H., Meng, J., Liu, Z. Q., Lan, Y., Yang, X., Huang, Y. W., He, T. Y., & Chen, W. F. (2021). Effects of biochar on N2O emission in denitrification pathway from Paddy Soil: A drying incubation study. Science of the Total Environment, 787, 147591. https://doi.org/10.1016/j.scitotenv.2021.147591
  • Liu, Z., Dugan, B., Masiello, C. A., Gonnermann, H. M., & Paz-Ferreiro, J. (2017). Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One, 12(6), 1–19. https://doi.org/10.1371/journal.pone.0179079
  • Liu, D., Feng, Z., Zhu, H., Yu, L., Yang, K., Yu, S., Zhang, Y., & Guo, W. (2020). Effects of corn straw biochar application on Soybean growth and alkaline soil properties. BioResources, 15(1), 1463–1481. https://doi.org/10.15376/biores.15.1.1463-1481
  • Li, C., Zhao, C., Zhao, X., Wang, Y., Lv, X., Zhu, X., & Song, X. (2022). In: Beneficial effects of biochar application with nitrogen fertilizer on soil nitrogen retention, absorption and utilization in maize production 2022. Agronomy, 13(1), 113. [place unknown]. https://doi.org/10.3390/agronomy13010113
  • Lusiba, S., Odhiambo, J., & Ogola, J. (2017). Effect of biochar and phosphorus fertilizer application on soil fertility: Soil physical and chemical properties.2017. Archives of Agronomy & Soil Science, 63(4), 477–490. https://doi.org/10.1080/03650340.2016.1218477
  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian Savanna Oxisol. Plant and Soil, 333(1–2), 117–128. https://doi.org/10.1007/s11104-010-0327-0
  • Marsh, H., & Reinoso, F. R. (2006). Activated. Carbon; Elsevier.
  • Mavi, M. S., Singh, G., Singh, B. P., Sekhon, B. S., Choudhary, O. P., & Sagi, S. (2018). Interactive effects of Rice-Residue Biochar and N-Fertilizer on soil Functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition, 18, 41–59. https://doi.org/10.4067/S0718-95162018005000201
  • Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., & Yin, G. (2016). Biochar Improves soil Aggregate Stability and water availability in a mollisol after three years of field application. PLoS One, 11(5), 11. https://doi.org/10.1371/journal.pone.0154091
  • Mierzwa-Hersztek, M., Wolny-Koładka, K., Gondek, K., Gałązka, A., Of C of B, G. K., & Microbiocenotic Composition, N. (2020). Dehydrogenase activity index and chemical properties of Sandy Soil. Waste Biomass Valorization, 11(8), 3911–3923. https://doi.org/10.1007/s12649-019-00757-z
  • Mimmo T., Panzacchi P., Baratieri M., Davies, C. A., Tonon G. Z A. S K., and RG, S. (2014). Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2014.01.004
  • Mlonka-Mędrala, A., Evangelopoulos, P., Sieradzka, M., Zajemska, M., & Magdziarz, A. (2021). Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality Char: Experimental and numerical investigations. Fuel, 296, 120611. https://doi.org/10.1016/j.fuel.2021.120611
  • Nair, V. D., Nair, P. K. R., Dari, B., Freitas, A. M., Chatterjee, N., & Pinheiro, F. M. (2017). Biochar in the agroecosystem–climate-Change–sustainability nexus. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02051
  • Ndriangu, S. M., Liu, Y., Xu, K., & Song, S. (2019). Risk evaluation of pyrolyzed biochar from mul-tiple wastes. Journal of Chemistry, 2019, 1–28. https://doi.org/10.1155/2019/4506314
  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174, 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a
  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., & Busscher, W. J. (2009). Characterization of Designer biochar produced at different temperatures and their effects on a loamy sand. Environmental Engineering Science, 3, 195–206 https://openjournals.neu.edu/aes/journal/article/view/v3art5.
  • Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029
  • Özçimen, D., & Karaosmanolu, F. (2004). Production and characterization of bio-oil and Biochar from rapeseed cake. Renew Energy, 29(5), 779–787. https://doi.org/10.1016/j.renene.2003.09.006
  • Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., Currie, W. S., King, J. Y., Adair, E. C., Brandt, L. A., & Hart, S. C. (2007). Global scale similarities in Nitro-Gen Release Patterns during long-term decomposition. Science, 315(5810), 361–364. https://doi.org/10.1126/science.1134853
  • Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M. P. J., & Gascó, G. (2018). Biochar from biosolids pyrolysis: A review. International Journal of Environmental Research and Public Health, 15(5), 15. https://doi.org/10.3390/ijerph15050956
  • Pudasaini, K., Walsh, K. B., Ashwath, N., & Bhattarai, T. (2016). Effects of biochar addition on Plant available water of a loamy sandy soil and consequences on cowpea growth. Acta horticulturae, (1112), 357–364. https://doi.org/10.17660/actahortic.2016.1112.48
  • Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345–365. https://doi.org/10.1016/j.chemosphere.2019.03.170
  • Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055
  • Reyes-Cabrera, J., Leon, R. G., Erickson, J. E., Silveira, M. L., Rowland, D. L., & Morgan, K. T. (2017). Biochar changes shoot growth and root distribution of soybean during early vegetative stages. Crop Science, 57, 454–461. https://doi.org/10.2135/cropsci2016.01.0075
  • Schmidt, M. W. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777–793. https://doi.org/10.1029/1999gb001208
  • Shenghai, P. U., Guangyong, L. I., TANG, G., ZHANG, Y., Wanli, X. U., Pan, L. I., FENG, G., & DING, F. (2019). Effects of biochar on water Movement Characteri Tics in Sandy soil under drip irrigation. Journal of Arid Land, 11(5), 740–753. https://doi.org/10.1007/s40333-019-0106-6
  • Singh, N., Abiven, S., Torn, M. S., & Schmidt, M. W. I. (2012). Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences, 9(8), 2847–2857. https://doi.org/10.5194/bg-9-2847-2012
  • Sircar, A. S., & Wang, W. J. P. (2014). Core experimental and modeling study of Pinewood char gasification with CO2. Fuel, 119, 38–46. https://doi.org/10.1016/j.fuel.2013.11.026
  • Smisek, M., & Cerny, S. (1970). Activated carbon. In Topics in organic and General chemistry (pp. 286–290). Elsevier Co. https://api.semanticscholar.org/CorpusID:137379213
  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). Chapter 2 - a review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9
  • Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. B. (2009). Climate change and soil: A review to Guide future research. CSIRO Land Water Sci Rep, 5(9), 17–31. https://doi.org/10.4225/08/58597219a199a
  • Solomon, D., Lehmann, J., Thies, J., Schäfer, T., Liang, B., Kinyangi, J., Skjemstad, J., Petersen, J., Luizão, F., & Skjemstad, J. (2007). Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian dark earths. Geochimica et cosmochimica acta, 71(9), 2285–2298. https://doi.org/10.1016/j.gca.2007.02.014
  • Sousa, A. A. T. C., & Figueiredo, C. C. (2016). Sewage sludge biochar: Effects on soil fertility and growth of radish. Biological Agriculture & Horticulture, 32, 127–138. https://doi.org/10.1080/01448765.2015.1093545
  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and Sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053
  • Stewart, C. E., Zheng, J., Botte, J., & Cotrufo, F. (2013). Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioener, 5(2), 153–164. https://doi.org/10.1111/gcbb.12001
  • Straka, T. J. (2017). Charcoal as a fuel in the ironmaking and smelting industries. Advances in Historical Studies, 06(01), 56–64. https://doi.org/10.4236/ahs.2017.61004
  • Sun, H. Z. (2008). Zhou impacts of charcoal characteristics on Sorption of Polycyclic aromatic Hydrocarbons chemosphere. Chemosphere, 71(11), 2113–2120. https://doi.org/10.1016/j.chemosphere.2008.01.016
  • Tian, S., Tan, Z., Kasiulienė, A., & Ai, P. (2017). Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil. Chinese Journal of Chemical Engineering, 25(4), 477–486. https://doi.org/10.1016/j.cjche.2016.09.009
  • Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L., & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresources and Bioprocessing, 9(1). Internet. https://doi.org/10.1186/s40643-022-00618-z.
  • Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. The European Journal of Agronomy, 34(4), 231–238. https://doi.org/10.1016/j.eja.2011.01.006
  • Verheijen F.,Jeffery S.,Bastos, A. C., Velde M. & Diafas I.(2010). In EUR 24099 EN (pp. 2183–2207). Office for the Official Publications of the European Communities.
  • Verheijen, F., ZG, A., Silva, A., AF, C., Ben-Hur, A., & M, K. J. J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194–202. https://doi.org/10.1016/j.geoderma.2019.03.044
  • Vijay, V. K., Kapoor, R., Trivedi, A., & Vijay, V. (2015). Biogas as clean fuel for cooking and transportation needs in India. In Advances in bioprocess technology (pp. 257–275). Springer Interna-tional Publishing. https://doi.org/10.1007/978-3-319-17915-5_14
  • Wang, D., Li, C., Parikh, S. J., & Scow, K. M. (2019). Impact of biochar on water retention of two agricultural soils – a multi-scale analysis. Geoderma, 340, 185–191. https://doi.org/10.1016/j.geoderma.2019.01.012
  • Wan, Q., Yuan, J.-H., Xu, R.-K., & Li, X.-H. (2013). Pyrolysis temperature influences ameliorating effects of biochars on acidic soil. Environmental Science and Pollution Research, 21(4), 2486–2495. https://doi.org/10.1007/s11356-013-2183-y
  • Wen, Z., Chen, Y., Liu, Z., & Meng, J. (2022). Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. European Journal of Soil Biology, 113, 103448. https://doi.org/10.1016/j.ejsobi.2022.103448
  • Widowati, U. W., Soehono, L. A., & Guritno, B. (2011). Effect of biochar on the release and loss of nitrogen from urea fertilization. Journal of Agriculture and Food Technology, 1(7), 127–132. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ece21fbf50c6af235050b1d65687d92532974cbf
  • Yadav, K. S. (2019). Jagadevan influence of process parameters on synthesis of biochar by pyroly-sis of biomass. In An Alternative Source of Energy Recent Advances in pyrolysis, IntechOpen, place unknown. https://doi.org/10.5772/intechopen.88204
  • Yang, H. R., Y, R. H., Chen, C., Zheng, L., DT, D. H., & Liang. (2006). In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuel, 20(1), 388–393. https://doi.org/10.1021/ef0580117
  • Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., & Antille, D. L. (2016). Soil water content and photosynthetic capacity of Spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica, 55(3), 532–542. https://doi.org/10.1007/s11099-016-0672-1
  • Yuan, M., Zhu, X., Sun, H., Song, J., Li, C., Shen, Y., & Li, S. (2023). The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties. Chemosphere, 312, 137101. https://doi.org/10.1016/j.chemosphere.2022.137101
  • Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., & Huang, J. (2019). BiocharAmendment Im-Proves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117
  • Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G. D., Fornasier, F., & Liu, J. (2011). Peressotti microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 50, 45–51. https://doi.org/10.1016/j.apsoil.2011.07.012
  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China. Agriculture, Ecosystems and Environment, 139(4), 469–475. https://doi.org/10.1016/j.agee.2010.09.003
  • Zhou, Z., Gao, T., Zwieten, L., Zhu, Q., Yan, T., Xue, J., & Wu, Y. (2019). Soil microbial community structure shifts induced by Biochar and Biochar-based fertilizer amendment to karst calcareous soil. Soil Science Society of America Journal, 0(2), 398–408. https://doi.org/10.2136/sssaj2018.08.029
  • Zong, Y., Xiao, Q., & Lu, S. (2015). Acidity, water retention, and mechanical physical quality of a strongly acidic ultisol amended with biochars derived from different feedstocks. Journal of Soils and Sediments, 16(1), 177–190. https://doi.org/10.1007/s11368-015-1187-2