1,238
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Total land suitability analysis for rice and potato crops through FuzzyAHP technique in West Bengal, India

, , , ORCID Icon, , & show all
Article: 2257975 | Received 17 Jun 2023, Accepted 07 Sep 2023, Published online: 18 Sep 2023

References

  • Agricoop India. (2020). Agricultural Statistics at a Glance 2020. Accessed on 10 March https://agricoop.gov.in/en/Horticulturereports
  • Ali, A. M., & Aboelghar, M. (2019). Comparative analysis of different methods of leaf area index estimation of Strawberry under Egyptian condition. International Journal of Advanced Remote Sensing and GIS, 8(1), 2963–30. https://doi.org/10.23953/cloud.ijarsg.405
  • Amini, S., Rohani, A., Hossein, A. M., & Reza, A. M. (2019). Assessment of land suitability and agricultural production sustainability using a combined approach (fuzzy-AHP-GIS): A case study of Mazandaran Province, Iran. Information Processing in Agriculture, 7(3), 384–402. https://doi.org/10.1016/j.inpa.2019.10.001
  • Antunes, P., Karadzic, V., Santos, R., Beça, P., & Osann, A. (2011). Participatory multi-criteria analysis of irrigation management alternatives: The case of the caia irrigation district, Portugal. International Journal of Agricultural Sustainability, 9(2), 334–349. https://doi.org/10.1080/14735903.2011.582358
  • Arabameri, A., Saha, S., Mukherjee, K., Blaschke, T., Chen, W., Ngo, P. T. T., & Band, S. S. (2020). Modeling spatial flood using novel ensemble artificial intelligence approaches in northern Iran. Remote Sensing, 12(20), 3423. https://doi.org/10.3390/rs12203423
  • Bagherzadeh, A., & Gholizadeh, A. (2016). Modeling land suitability evaluation for wheat production by parametric and TOPSIS approaches using GIS, northeast of Iran. Modelling Earth Systems and Environment, 2(3), 1–11. https://doi.org/10.1007/s40808-016-0177-8
  • Baroudy, A. A. E., Ali, A. M., Mohamed, E. S., Moghanm, F. S., Shokr, M. S., Savin, I., Poddubsky, A., Ding, Z., Kheir Ahmed, M. S., Aldosari, A. A., Elfadaly, A., Dokukin, P., & Lasaponara, R. (2020). Modeling land suitability for rice crop using Remote sensing and soil quality indicators: The case study of the Nile Delta. Sustainability, 12(22), 9653. https://doi.org/10.3390/su12229653
  • Baumgart-Getz, A., Prokopy, L. S., & Floress, K. (2012). Why farmers adopt best management practices in the United States: A meta-analysis of the adoption literature. Journal of Environmental Management, 96(1), 17–25. https://doi.org/10.1016/j.jenvman.2011.10.006
  • Behzad, S., Razavi, M., & Mahajeri, M. (1992). The effect of various amounts of ammonium phosphate and urea on saffron production. Acta Horticulturae, 306(306), 337–339. https://doi.org/10.17660/ActaHortic.1992.306.44
  • Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2
  • Dang, K. B., Burkhard, B., Windhorst, W., & Müller, F. (2019). Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environmental Modelling & Software, 114, 166–180. https://doi.org/10.1016/j.envsoft.2019.01.015
  • Das, J., Gayen, A., & Saha, S. (2017). Modelling of alternative crops suitability to tobacco based on analytical hierarchy process in Dinhata subdivision of Koch Bihar district, West Bengal. Modelling Earth Systems and Environment, 3(4), 1571–1587. https://doi.org/10.1007/s40808-017-0392-y
  • Debesa, G., Gebre, S. L., Melese, A., Regassa, A., Teka, S., & Tejada Moral, M. (2020). GIS and remote sensing-based physical land suitability analysis for major cereal crops in Dabo Hana district, South-West Ethiopia. Cogent Food & Agriculture, 6(1), 1780100. https://doi.org/10.1080/23311932.2020.1780100
  • Dengiz, O. (2019). Soil quality index for paddy fields based on standard scoring functions and weight allocation method. Archives of Agronomy & Soil Science, 66(3), 301–315. https://doi.org/10.1080/03650340.2019.1610880
  • Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 28, 779–784.
  • Eastman, J. R., Jin, W., Kyemand, A. K., & Toledano, J. (1995). Raster procedures for multi-criteria/multi-objective decisions. Photogrammetric Engineering and Remote Sensing, 61(5), 539–547.
  • Estes, L., Bradley, B. A., Beukes, H., Hole, D. G., Lau, M., Oppenheimer, M. G., Schulze, R., Tadross, M., & Turner, W. R. (2013). Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Global Ecology and Biogeography, 22(8), 1007–1018. https://doi.org/10.1111/geb.12034
  • Everest, T., & Gür, E. (2022). A GIS-based land evaluation model for peach cultivation by using AHP: A case study in NW Turkey. Environmental Monitoring and Assessment, 194(4), 241. https://doi.org/10.1007/s10661-022-09898-6
  • Everest, T., Sungur, A., & Özcan, H. (2021). Determination of agricultural land suitability with a multiple-criteria decision-making method in Northwestern Turkey. International Journal of Environmental Science and Technology, 18(5), 1073–1088. https://doi.org/10.1007/s13762-020-02869-9
  • Ghosh, B. K. (2010). Determinants of farm mechanisation in modern Agriculture: A case study of burdwan districts of West Bengal. International Journal of Agricultural Research, 5(12), 1107–1115. https://doi.org/10.3923/ijar.2010.1107.1115
  • Government of India. (2017). Soil health card report by Department of Agriculture and Farmers Welfare, Minstry of Agriculture and Farmers Welfare, government of India. www.soilhealth.dac.gov.in. Accessed on 10 March.
  • Gyekye, P. M., Domozoro, C. Y. F., Musah, M., Ababio, F. O., & Sadick, A. (2021). Soil and land suitability assessment for rice cultivation at Tono irrigation area in the Upper East region, Ghana. Open Journal of Applied Sciences, 11(11), 1230–1239. https://doi.org/10.4236/ojapps.2021.1111093
  • Hamzeh, S., Mokarram, M., Haratian, A., Bartholomeus, H., Ligtenberg, A., & Bregt, A. (2016). Feature selection as a time and cost-saving approach for land suitability classification (case study of shavur plain, Iran. Agriculture, 6(4), 52. https://doi.org/10.3390/agriculture6040052
  • Houshyar, E., Smith, P., Mahmoodi-Eshkaftaki, M., & Azadi, H. (2017). Sustainability of wheat production in southwest Iran: A fuzzy-GIS based evaluation by ANFIS. Cogent Food & Agriculture, 3(1), 1327682. https://doi.org/10.1080/23311932.2017.1327682
  • Ilyas, Q. M., Ahmad, M., & Mehmood, A. (2023). Automated estimation of crop yield using artificial intelligence and Remote sensing technologies. Bioengineering, 10(2), 125. https://doi.org/10.3390/bioengineering10020125
  • IRRI. 1985. Soil physics and Rice. 1985 International Rice Research Institute Los Baños Laguna: 1-397. ISBN 971-104-146-4.
  • Islam, M. M., Ahamed, T., & Noguchi, R. (2018). Land suitability and insurance Premiums: A GIS-based multicriteria analysis approach for sustainable rice production. Sustainability, 10(6), 1759. https://doi.org/10.3390/su10061759
  • Jain, R., Chand, P., Rao, S. C., & Agarwal, P. (2020). Crop and soil suitability analysis using multi-criteria decision making in drought-prone semi-arid tropics in India. Journal of Soil and Water Conservation, 19(3), 271. https://doi.org/10.5958/2455-7145.2020.00036.3
  • Jamil, M., Ahmed, R., & Sajjad, H. (2018). Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process. GeoJournal, 83(3), 595–611. https://doi.org/10.1007/s10708-017-9788-5
  • Jiao, L., & Liu, Y. (2007). Model of land suitability evaluation based on computational intelligence. Geo-Spatial Information Science, 10(2), 151–156. https://doi.org/10.1007/s11806-007-0053-9
  • Kahsay, A., Haile, M., Gebresamuel, G., Mohammed, M., & Tejada Moral, M. (2018). Land suitability analysis for sorghum crop production in northern semi-arid Ethiopia: Application of GIS-based fuzzy AHP approach. Cognet Food & Agriculture, 4(1), 1507184. https://doi.org/10.1080/23311932.2018.1507184
  • Keshavarzi, A., Tuffour, H. O., Bagherzadeh, A., Tattrah, L. P., Kumar, V., Gholizadeh, A., & Rodrigo-Comino, J. (2020). Using fuzzy-AHP and parametric technique to assess soil fertility status in northeast of Iran. Journal Of, 7(4), 931–948. https://doi.org/10.1007/s11629-019-5666-6
  • Khan, M. A., Ahmad, R., & Khan, H. H. (2022). Multi-criteria land suitability analysis for Agriculture using AHP and Remote sensing data of northern region India. In Y. Zhang & Q. Cheng (Eds.), Geographic Information Systems and applications in coastal studies. https://doi.org/10.5772/intechopen.102432
  • Kondhia, A., Tabien, R. E., & Ibrahim, A. (2015). Evaluation and selection of high biomass rice (oryza sativa L.) for drought tolerance. American Journal of Plant Sciences, 06(12), 1962–1972. https://doi.org/10.4236/ajps.2015.612197
  • Kumar, A., Singh, D., & Mahapatra, S. K. (2020). Current and potential soil suitability of Pearl Millet, wheat and mustard for sustainable production in Aravalli Foothills of Mewat region of Haryana, India. International Journal of Current Microbiology and Applied Sciences, 9(5), 3566–3583. ISSN : 2319-7706. https://doi.org/10.20546/ijcmas.2020.905.424
  • Lak, M. B., & Almassi, M. (2011). An analytical review of parameters and indices affecting decision making in agricultural mechanization. Australian Journal of Agricultural Engineering, 2(5), 140–146. ISSN:1836-9448.
  • Ling, W.-K. (2007). Reviews. Nonlinear Digital Filters, 8–31. https://doi.org/10.1016/b978-012372536-3/50002-8
  • López-Blanco, J., Pérez-Damián, J. L., Conde Álvarez, A. C., Gómez-Díaz, J. D., & Monterroso-Rivas, A. I. (2018). Land suitability levels for rainfed maize under current conditions and climate change projections in Mexico. Outlook on Agriculture, 47(3), 181–191. https://doi.org/10.1177/0030727018794973
  • Magri, A., Van Es, H. M., Glos, M. A., & Cox, W. J. (2005). Soil test, aerial image and yield data as inputs for site-specific fertility and hybrid management under maize. Precision Agriculture, 6(1), 87–110. https://doi.org/10.1007/s11119-004-0687-7
  • Mallick, J., Khan, R. A., Ahmed, M., Alqadhi, S. D., Alsubih, M., Falqi, I. A., & Hasan, M. A. (2019). Modeling groundwater potential zone in a semi-arid region of aseer using fuzzy-AHP and geoinformation techniques. Water, 11(12), 2656–. https://doi.org/10.3390/w11122656
  • Mandal, V. P., Rehman, S., Ahmed, R. M., & Kumar, M.P & Sajjad, H. (2020). Land suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP. Spatial Information Research, 28(5), 589–599. https://doi.org/10.1007/s41324-020-00315-z
  • McFadden, D. (1973). Conditional logit analysis of quantitative choice behavior. In P. Zarembka (Ed.), Frontiers in Econometrics (pp. 105–142). Academic Press.
  • Mendas, A., & Delali, A. (2012). Integration of multi criteria decision analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Computer Electronics in Agriculture, 83, 117–126. https://doi.org/10.1016/j.compag.2012.02.003
  • Mishra, A. R., Rani, P., & Bharti, S. (2021). Assessment of Agriculture crop selection using Pythagorean fuzzy CRITIC–VIKOR decision-making framework. Published In: Pythagorean Fuzzy Sets, Springer Singapore. https://doi.org/10.1007/978-981-16-1989-2_7https://www.springerprofessional.de/en/a-survey-on-recent-applications-of-pythagorean-fuzzy-sets-a-stat/19384322
  • Mohammadi, M. F., Najafi, A., & Ahmadlo, F. (2015). Using the analytical network process (ANP) based on BOCR model to select the most suitable region for forestation with almond species. Nusantara Bioscience, 7(2), 118–127. https://doi.org/10.13057/nusbiosci/n070210
  • Mostafiz, R. B., Noguchi, R., & Ahamed, T. (2021). Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land, 10(2), 223. https://doi.org/10.3390/land10020223
  • Mugiyo, H., Chimonyo, V. G. P., Sibanda, M., Kunz, R., Masemola, C. R., Modi, A. T., & Mabhaudhi, T. (2021). Evaluation of land suitability methods with reference to neglected and under utilised crop species: A scoping review. Land, 10(2), 125. https://doi.org/10.3390/land10020125
  • Nigussie, D., Mulugeta, W., Molla, A., Bishaw, Z., & Biradar, C. (2019). Land suitability mapping for production of Chickpea, Faba Bean and malt barley varieties in Ethiopia. International Center for Agricultural. Research in the Dry Areas (ICARDA. https://www.researchgate.net/publication/335797957
  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of Available phosphorus in soils by extraction with Sodium Bicarbonate, USDA circular 939. United States Department of Agriculture.
  • Otgonbayar, M., Atzberger, C., Chambers, J., Amarsaikhan, D., Bock, S., & Tsogtbayar, J. (2017). Land suitability evaluation for Agricultural cropland in Mongolia using the spatial MCDM method and AHP based GIS. Journal of Geoscience and Environment Protection, 5(09), 238–263. https://doi.org/10.4236/gep.2017.59017
  • Özkan, B., Dengiz, O., & Turan, İ. D. (2020). Site suitability analysis for potential agricultural land with spatial fuzzy multi-criteria decision analysis in regional scale under semi-arid terrestrial ecosystem. Scientific Report, 10(1), 22074,–. https://doi.org/10.1038/s41598-020-79105-4
  • Pandey, A., Chowdary, V. M., Mal, B. C., & Dabral, P. P. (2011). Remote sensing and GIS for identification of suitable sites for soil and water conservation structures. Land Degradation and Development, 22(3), 359–372. https://doi.org/10.1002/ldr.1012
  • Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 0–114. https://doi.org/10.1016/j.landurbplan.2010.09.001
  • Pasqualotto, N., Delegido, J., Van Wittenberghe, S., Rinaldi, M., & Moreno, J. (2019). Multi-crop green LAI estimation with a new simple Sentinel-2 LAI index (SeLI). Sensors, 19(4), 904. https://doi.org/10.3390/s19040904
  • Perveen, M. F., Nagasawa, R., Ahmed, A. O. C., Uddin, M. I., & Kimura, R. (2008). Integrating biophysical and socio-economic data using GIS for land evaluation of wheat cultivation: A case study in north-west Bangladesh. Journal of Food, Agriculture & Environment, 6(2), 432–437. https://doi.org/10.1234/4.2008.1274
  • Pilevar, A. R., Matinfar, H. R., Sohrabi, A., & Sarmadian, F. (2020). Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicator, 110, 105887. https://doi.org/10.1016/j.ecolind.2019.105887
  • Pourkhabbaz, H. R., Javanmardi, S., & Faraji Sabokbar, H. A. (2014). Suitability analysis for determining potential Agricultural land use by the multi-criteria decision making models SAW and VIKOR-AHP (case study: Takestan-qazvin plain). Journal of Agricultural Science and Technology, 16(5), 1005–1016. http://jast.modares.ac.ir/article-23-4889-en.html
  • Purnamasari, R. A., Ahamed, T., & Noguchi, R. (2018). Land suitability assessment for cassava production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia-Pacific Journal of Regional Science, 3(5), 1–32. https://doi.org/10.1007/s41685-018-0079-z
  • Radočaj, D., & Jurišić, M. (2022). GIS-Based cropland suitability prediction using machine learning: A novel approach to sustainable Agricultural production. Agronomy, 12(9), 2210. https://doi.org/10.3390/agronomy12092210
  • Rado, D., Jurisi, M., Gasparovi, M., & Plascak, I. (2020). Optimal soybean (glycine max L.) land suitability using GIS-Based Multicriteria analysis and Sentinel-2 multitemporal images. Remote Sensing, 12(1463). https://doi.org/10.3390/rs12091463
  • Rashidi, F., & Sharifian, S. (2022). A comparative analysis of three multi-criteria decision-making methods for land suitability assessment. Environmental Monitoring Assessment, 194(9), 657. https://doi.org/10.1007/s10661-022-10259-6
  • Robertson, N., & Oinam, B. (2023). Rice suitability mapping using the analytic hierarchy process approach in a river catchment. Global Journal of Environmental Science and Management, 1(33), 141–156. https://doi.org/10.22034/GJESM.2023.01.11
  • Rodcha, R., Tripathi, N. K., & Shrestha, P. (2019). Comparison of cash crop suitability assessment using parametric, AHP, and FAHP methods. Land, 8(5), 79–. https://doi.org/10.3390/land8050079
  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
  • Sahin, E. K. (2020). Comparative analysis of gradient boosting Algorithms for landslide susceptibility mapping. Geocarto International, 37(9), 2441–2465. https://doi.org/10.1080/10106049.2020.1831623
  • Sarkar, B., Das, P., Islam, N., Basak, A., Debnath, M., & Roy, R. (2022). Land suitability analysis for paddy crop using GIS-based fuzzy-AHP (F-AHP) method in Koch Bihar district, West Bengal. Geocarto International, 37(25), 8952–8978. https://doi.org/10.1080/10106049.2021.2007299
  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178–190. https://doi.org/10.1016/j.geoderma.2017.09.012
  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., & McDowell, R. W. (2019). Integration of ANP and fuzzy set techniques for land suitability assessment based on remote sensing and GIS for irrigated maize cultivation. Archives of Agronomy & Soil Science, 65(8), 1063–1079. https://doi.org/10.1080/03650340.2018.1549363
  • Shaloo Singh, R. P., Bisht, H., Suna, R., Jain, T., Bana, R. S., Godara, S., Shivay, Y. S., Bedi, N., Singh, J., Bedi, J., Begam, S., Tamta, M., & Gautam, S. (2022). Crop-suitability analysis using the analytic hierarchy process and geospatial techniques for cereal production in north India. Sustainability, 14, 5246. https://doi.org/10.3390/su14095246
  • Singha, C., & Swain, K. C. (2016). Land suitability evaluation criteria for agricultural crop selection: A review. Agricultural Reviews, 37(2). https://doi.org/10.18805/ar.v37i2.10737
  • Singha, C., & Swain, K. C. (2022). Rice and potato yield prediction using artificial intelligence techniques. In P. K. Pattnaik, R. Kumar, & S. Pal (Eds.), Internet of things and Analytics for Agriculture, 3. Studies in big data, 99 (pp. 185–199). Springer. https://doi.org/10.1007/978-981-16-6210-2_9
  • Singha, C., Swain, K. C., & Swain, S. K. (2020). Best crop rotation selection with GIS-AHP technique using soil nutrient variability. Agriculture, 10(6), 213. https://doi.org/10.3390/agriculture10060213
  • Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Arnal, A., Andrés, A. P., & Zurbano, J. A. (2018). Scalable parcel-based crop identification scheme using Sentinel-2 data time-series for the Monitoring of the common Agricultural policy. Remote Sensing, 10(6), 911. https://doi.org/10.3390/rs10060911
  • Soil Survey Staff. (1993). Soil survey manual. Agricultural handbook. No. 18. US Department of Agriculture, Soil Conservation Service.
  • Son, N. T., Chen, C. F., Chen, C. R., & Guo, H. Y. (2020). Classification of multitemporal Sentinel-2 data for field-level Monitoring of rice cropping practices in Taiwan. Advances in Space Research, 65(8), 1910–1921. COSPAR. https://doi.org/10.1016/j.asr.2020.01.028
  • Soria, D., Garibaldi, J. M., Ambrogi, F., Biganzoli, E. M., & Ellis, I. O. (2011). A “non-parametric” version of the naive Bayes classifier. Knowledge-Based Systems, 24(6), 775–784. https://doi.org/10.1016/j.knosys.2011.02.014
  • Subbaiah, B. V., & Asija, G. L. (1965). A rapid procedure for determination of available nitrogen in soil. Current Science, 25, 259–260. https://www.scienceopen.com/
  • Suruliandi, A., Mariammal, G., & Raja, S. P. (2021). Crop prediction based on soil and environmental characteristics using feature selection techniques. Mathematical and Computer Modelling of Dynamical Systems, 27(1), 117–140. https://doi.org/10.1080/13873954.2021.1882505
  • Swain, K. C., & Singha, C. (2018). Soil profile based land suitability study for jute and lentil using AHP ranking. International Journal on Bio-Resource and Stress Management, 9(3), 323–329. https://doi.org/10.23910/IJBSM/2018.9.3.1869
  • Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., & Scholten, T. (2020). Land suitability assessment and Agricultural production Sustainability using machine learning models. Agronomy, 10(4), 573. https://doi.org/10.3390/agronomy10040573
  • Tahria, M., Maanan, M., Tahri, H., Kašpar, J., Purwestri, R. C., Mohammadi, Z., & Marušák, R. (2022). New fuzzy-AHP matlab based graphical user interface (GUI) for a broad range of users: Sample applications in the environmental field. Computer Geoscience, 158, 104951. https://doi.org/10.1016/j.cageo.2021.104951
  • Tashayo, B., Honarbakhsh, A., Akbari, M., & Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region. Iran Journal of the Saudi Society of Agricultural Sciences, 19(5), 332-338 S1658077X20300217–. https://doi.org/10.1016/j.jssas.2020.03.003
  • Trigoso, D. I., Lopez, R. S., Briceño, N. B. R., López, J. O. S., Fernández, D. G., Oliva, M., Huatangari, L. Q., Murga, R. E. T., Castillo, E. B., & Gurbillón, M. A. B. (2020). Land suitability analysis for potato crop in the Jucusbamba and tincas microwatersheds. AHP and RS–GIS Approach, Agronomy. 10 1898. https://doi.org/10.3390/agronomy10121898
  • Walkley, A., & Black, L. A. (1934). An examination of datjareff method for determining soil organic matter: And a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.
  • Wang, W., & Luoh, L. (2000). Simple computation for the defuzzifications of center of sum and center of gravity. Journal of Intelligent & Fuzzy Systems, 9, 53–59. https://dl.acm.org/doi/10.5555/1314373.1314378
  • Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021). Using machine learning and feature selection for alfalfa yield prediction. AI, 2(1), 71–88. https://doi.org/10.3390/ai2010006
  • Wijitkosum, S. (2018). Fuzzy AHP for drought risk assessment in Lam Ta Kong watershed, the north-eastern region of Thailand. Soil Water Research, 13(4), 218–225. https://doi.org/10.17221/158/2017-SWR
  • Yohannes, H., & Soromessa, T. (2018). Land suitability assessment for major crops by using GIS-based multi-criteria approach in andit tid watershed, Ethiopia. Cogent Food & Agriculture, 4(1), 1470481. https://doi.org/10.1080/23311932.2018.1470481