609
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Investigation of physical, nutritional and sensory properties of wheat bread treated with purified thermostable cellulase and alpha amylase

, , , & ORCID Icon
Article: 2261839 | Received 06 Jan 2023, Accepted 18 Sep 2023, Published online: 28 Sep 2023

References

  • Adhyaru, D. N., Bhatt, N. S., & Modi, H. A. (2015). Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour and Bioprocess, 2(1), 1–17. https://doi.org/10.1186/s40643-014-0029-1
  • Asha, B. M., & Sakthivel, N. (2014). Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Annals of Microbiology, 64(4), 1839–1848. https://doi.org/10.1007/s13213-014-0835-x
  • Azadian, F., Badoei-Dalfard, A., Namaki-Shoushtari, A., Karami, Z., & Hassanshahian, M. (2017). Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. Journal of Genetic Engineering & Biotechnology, 15(1), 187–196. https://doi.org/10.1016/j.jgeb.2016.12.005
  • Back, S. C., & Kwon, Y. J. (2007). Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnology and Bioprocess Engineering: BBE, 12(4), 404–409. https://doi.org/10.1007/BF02931063
  • Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620. https://doi.org/10.1016/S0734-9750(97)00006-2
  • Bollaín, C., Angioloni, A., & Collar, C. (2005). Bread staling assessment of enzyme-supplemented pan breads by dynamic and static deformation measurements. European Food Research & Technology, 220(1), 83–89. https://doi.org/10.1007/s00217-004-1059-2
  • Caf, Y., Valipour, E., & Arikan, B. (2014). Study on cold-active and acidophilic cellulase (CMCase) from a novel psychrotrophic isolate Bacillus sp. K-11. International Journal of Current Microbiology and Applied Sciences, 3(5), 16–25.
  • Chen, Y., Eder, S., Schubert, S., Gorgerat, S., Boschet, E., Baltensperger, L., Windhab, E. J., Städeli, C., Kuster, S., Fischer, P., & Windhab, E. J. (2021). Influence of amylase addition on bread quality and bread staling. LWT - Food Science & Technology, 1(6), 1143–1150. https://doi.org/10.1021/acsfoodscitech.1c00158
  • Cheng, J., Huang, S., & Jiang, H. (2016). Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World Journal of Microbiology & Biotechnology, 32(1), 12. https://doi.org/10.1007/s11274-015-1957-4
  • Eida, M. F., Nagaoka, T., Wasaki, J., & Kouno, K. (2009). Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes & Environments / JSME, 1202170356. https://doi.org/10.1264/jsme2.ME11299
  • Fu, X., Liu, P., Lin, L., Hong, Y., Huang, X., Meng, X., & Liu, Z. (2010). A novel endoglucanase (Cel9p) from a marine bacterium Paenibacillus sp. BME-14. Applied Biochemistry and Biotechnology, 160(6), 1627–1636. https://doi.org/10.1007/s12010-009-8648-2
  • Furigo, A., & Pereira, E. B. (2001). Enzimas e suas aplicações: Cinética enzimática. Universi dade Federal de Santa Catarina. Florianópolis, 39(4).
  • George, S. P., Ahmad, A., & Rao, M. B. (2001). Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technology, 77(2), 171–175. https://doi.org/10.1016/S0960-8524(00)00150-4
  • Goel, N., Patra, R., Verma, S. K., & Sharma, P. C. (2019). Purification and characterization of cellulase from Pseudomonas sp. isolated from waste dumping site soil J appl. Biotechnology and Bioengineering, 6(3), 118–124. https://doi.org/10.15406/jabb.2019.06.00183
  • Harada, O., Lysenko, E. D., Edwards, N. M., & Preston, K. R. (2005). Effects of commercial hydrolytic enzyme additives on Japanese‐style sponge and dough bread properties and processing characteristics. Cereal Chemistry, 82(3), 314–320. https://doi.org/10.1094/CC-82-0314
  • Harjunpää, V., Helin, J., Koivula, A., Siika-Aho, M., & Drakenberg, T. (1999). A comparative study of two retaining enzymes of Trichoderma reesei: Transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the β-mannanase, Man5A. FEBS Letters, 443(2), 149–153. https://doi.org/10.1016/S0014-5793(98)01692-5
  • Harris, T. K., & Turner, G. J. (2002). Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 53(2), 85–98. https://doi.org/10.1080/15216540211468
  • Henrissat, B., Teeri, T. T., & Warren, R. (1998). A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Letters, 425, 352–354. https://doi.org/10.1016/S0014-5793(98)00265-8
  • Horn, S. J., Vaaje-Kolstad, G., & Westereng, B. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45. https://doi.org/10.1186/1754-6834-5-45
  • Kanchanadumkerng, P., Sakka, M., Sakka, K., & Wiwat, C. (2017). Characterization of endoglucanase from Paenibacillus sp. M33, a novel isolate from a freshwater swamp forest. Journal of Basic Microbiology, 57(2), 121–131. https://doi.org/10.1002/jobm.201600225
  • Karim, L. (2020). Stability of acidophile endoglucanase in ionic liquids. International Journal of Innovative Research, 7, 271–280. http://ijiset.com/vol7/v7s2/IJISET_V7_I2_29.pdf
  • Kim, Y. K., Lee, S. C., Cho, Y. Y., Oh, H. J., & Ko, Y. I. (2012). Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology, 1–9. https://doi.org/10.5402/2012/650563
  • Kostyuchenko, M., Martirosyan, V., Nosova, M., Dremucheva, G., Nevskaya, E., & Savkina, O. (2021). Effects of α-amylase, endo-xylanase and exoprotease combination on dough properties and bread quality. Agronomy Research, 1234–1248. https://doi.org/10.15159/AR.21.067
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
  • Lakhundi, S., Siddiqui, R., & Khan, N. A. (2015). Cellulose degradation: A therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites & Vectors, 8(1), 1–16. https://doi.org/10.1186/s13071-015-0642-7
  • Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., Chung, C. H., Lee, Y. C., & Lee, J. W. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2), 378–386. https://doi.org/10.1016/j.biortech.2006.12.013
  • Lee, J. P., Seo, G. W., An, S. D., & Kim, H. (2017). A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region. Journal of Applied Biological Chemistry, 60(3), 257–263. https://doi.org/10.3839/jabc.2017.041
  • Lowry, O. H., Resebriugh, N. J., Farr, A. L., & Randall, R. J. (1959). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Maijala, P. (2000). Heterobasidion annosum and wood decay: enzymology of cellulose, hemicellulose, and lignin degradation. [ Dissertation], University of Helsinki.
  • Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5, 500. https://doi.org/10.7150/ijbs.5.500
  • Marco, É. G., Heck, K., Martos, E. T., & Van Der Sand, S. T. (2017). Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. Anais da Academia Brasileira de Ciências, 89(3 suppl), 2359–2370. https://doi.org/10.1590/0001-3765201720170408
  • Mawadza, C., Hatti-Kaul, R., Zvauya, R., & Mattiasson, B. (2000). Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology, 83(3), 177–187. https://doi.org/10.1016/S0168-1656(00)00305-9
  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
  • Nagendran, S., Hallen-Adams, H. E., Paper, J. M., Aslam, N., & Walton, J. D. (2009). Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genetics & Biology: FG & B, 46, 427–435. https://doi.org/10.1016/j.fgb.2009.02.001
  • Norris, P. R., Clark, D. A., Owen, J. P., & Waterhouse, S. (1996). Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology (Reading, England), 142(4), 775–783. https://doi.org/10.1099/00221287-142-4-775
  • Okeke, B. C., & Lu, J. (2011). Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Applied Biochemistry and Biotechnology, 163(7), 869–881. https://doi.org/10.1007/s12010-010-9091-0
  • Olaoye, O. A., Onilude, A. A., & Idowu, O. A. (2006). Quality characteristics of bread produced from composite flours of wheat, plantain and soybeans. African Journal of Biotechnology, 5(11). 1102–1106. https://doi.org/10.5897/AJB06.014
  • Rawat, R., & Tewari, L. (2012). Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles, 16(4), 637–644. https://doi.org/10.1007/s00792-012-0463-y
  • Rizzello, C. G., Coda, R., Mazzacane, F., Minervini, D., & Gobbetti, M. (2012). Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Research International, 46(1), 304–313. https://doi.org/10.1016/j.foodres.2011.12.024
  • Røjel, N., Kari, J., Sørensen, T. H., Borch, K., & Westh, P. (2020). pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnology and Bioengineering, 117(2), 382–391. https://doi.org/10.1002/bit.27206
  • Rouillé, J., Valle, G. D., Devaux, M. F., Marion, D., & Dubreil, L. (2005). French bread loaf volume variations and digital image analysis of crumb grain changes induced by the minor components of wheat flour. Cereal Chemistry, 82(1), 20–27. https://doi.org/10.1094/CC-82-0020
  • Salmenkallio-Marttila, M., Katina, K., & Autio, K. (2001). Effects of bran fermentation on quality and microstructure of high-fiber wheat bread. Cereal Chemistry, 78(4), 429–435. https://doi.org/10.1094/CCHEM.2001.78.4.429
  • Sanz-Penella, J. M., Laparra, J. M., & Haros, M. (2014). Impact of α-amylase during bread making on in vitro kinetics of starch hydrolysis and glycaemic index of enriched bread with bran. Plant Foods for Human Nutrition, 69(3), 216–221. https://doi.org/10.1007/s11130-014-0436-7
  • Seo, J. K., Park, T. S., Kwon, I. H., Piao, M. Y., Lee, C. H., & Ha, J. K. (2013). Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australasian Journal of Animal Sciences, 26(1), 50–58. https://doi.org/10.5713/ajas.2012.12506
  • Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology, 2013, 1–7. https://doi.org/10.5402/2013/985685
  • Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46(7), 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010
  • Soeka, Y. S. (2019). Production and characterization of cellulase from the newly isolated Bacillus subtilis A8 on rice bran and corncob. IOP Conference Series: Earth and Environmental Science, 308(1), 012033. IOP Publishing. https://doi.org/10.1088/1755-1315/308/1/012033
  • Yurdugul, S., Pancevska, N. A., Yildiz, G. G., & Bozoglu, F. (2012). The influence of a cellulase bearing enzyme complex from anaerobic fungi on bread staling. Rom Agriculture Research, 29, 2067–5720.
  • Zghal, M. C., Scanlon, M. G., & Sapirstein, H. D. (2001). Effects of flour strength, baking absorption and processing conditions on the structure and mechanical properties of bread crumb density by digital image analysis. Cereal Chemistry, 78(1), 1–7. https://doi.org/10.1094/CCHEM.2001.78.1.1
  • Zhang, X. Z., & Zhang, Y. H. P. (2013). Cellulases: Characteristics, sources, production, and applications. In Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers (pp. 131–146). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118642047.ch8