2,007
Views
3
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Soilless culture technology to transform vegetable farming, reduce land pressure and degradation in drylands

Article: 2265106 | Received 26 May 2023, Accepted 26 Sep 2023, Published online: 08 Oct 2023

References

  • Abdullah, N. O. (2016). Vertical-horizontal regulated soilless farming via advanced hydroponics for domestic food production in Doha, Qatar. Research Ideas and Outcomes, 2, e8134. https://doi.org/10.3897/rio.2.e8134
  • Agegnehu, G., & Amede, T. (2017). Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere, 27(4), 662–13. https://doi.org/10.1016/S1002-0160(17)60382-5
  • Ahmed, A., Yu, H., Yang, X., & Jiang, W. (2014). Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience, 49(6), 722–728. https://doi.org/10.21273/HORTSCI.49.6.722
  • Ahmet, K. (2022). A feasibility study for different crops in a high-tech greenhouse in Turkey. World Journal of Agriculture and Soil Science, 8(3), 110. https://doi.org/10.33552/WJASS.2022.08.000688
  • Aires, A. (2018). Hydroponic production systems: Impact on nutritional status and bioactive compounds of fresh vegetables. In M. D. Asaduzzaman & T. Asao (Eds.), Vegetables: Importance of quality vegetables to human health (pp. 55–66). Intech Open, UTAD, Quinta de Prados. https://doi.org/10.5772/intechopen.73011
  • Akinyemi, F., Tlhalerwa, L., & Eze, P. (2021). Land degradation assessment in an African dryland context based on the composite land degradation index and mapping method. Geocarto International, 36(16), 1838–1854. https://doi.org/10.1080/10106049.2019.1678673
  • Al-Chalabi, M. (2015). Vertical farming: Skyscraper sustainability? Sustainable Cities and Society, 18(1), 74–77. https://doi.org/10.1016/j.scs.2015.06.003
  • Ali, A. (2023). Studies on Cucumber production using substrate culture under north Sinai conditions. Journal of Ecological Engineering, 24(6), 40–53. https://doi.org/10.12911/22998993/162302
  • Anonymous. (2018). The state of food security and nutrition in the world: Building climate resilience for food security and nutrition. Food and Agriculture Organization, World Food Programe and World Health Organization.
  • Anonymous. (2022). World population prospects 2022: Summary of results.UN DESA/POP/2022/TR/NO. 3.
  • Arumugam, T., Sandeep, G., & Maheswari, M. (2021). Soilless culture of vegetable crops: An overview. The Pharma Innovation Journal, 10(1), 773–785.
  • Barbosa, C., Francisca, D., Natalya, K., Alan, P., Lucas, R., Emily, W., Wohlleb, G., & Rolf, U. (2015). Comparison of land, water, and energy requirements of Lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Resources and Public Health, 12(1), 6879–6891. https://doi.org/10.3390/ijerph120606879
  • Barman, N., Hasan, M., Islam, M., & Banu, N. (2016). A review on present status and future prospective of hydroponics technique. Plant Environment Development, 5(2), 1–7.
  • Bello, A., Ahmed, T., & Ben-Hamadou, R. (2019). Hydroponics: Innovative option for growing crops in extreme environments. The case of the Arabian Peninsula (A review). Open Access Journal of Agricultural Research, 4(5), 1–16. https://doi.org/10.23880/OAJAR-16000235
  • Benke, K., & Tomkins, B. (2017). Future food-production systems: Vertical farming and controlled environment agriculture. Sustainability: Science, Practice & Policy, 13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054
  • Cámara‐Zapata, J., Brotons‐Martínez, J., Simón‐Grao, S., Martinez‐Nicolás, J., & García‐Sánchez, F. (2019). Cost–benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions. Journal of the Science of Food and Agriculture, 99(13), 5842–5851. https://doi.org/10.1002/jsfa.9857
  • Cicekli, M., & Barlas, N. (2014). Transformation of today greenhouses into high technology vertical farming systems for metropolitan regions. Journal of Environment Protection and Ecology, 15(4), 1779–1785. https://docs.google.com/a/jepe-journa
  • Cleveland, D., Phares, N., Nightingale, K., Weatherby, R., Radis, W., Ballard, J., Campagna, M., Kurtz, D., Livingston, K., Riechers, G., & Wilkins, K. (2017). The potential for urban household vegetable gardens to reduce greenhouse gas emissions. Landscape and Urban Planning, 157, 365–374. https://doi.org/10.1016/j.landurbplan.2016.07.008
  • Eigenbrod, C., & Gruda, N. (2015). Urban vegetables for food security in cities. A review. Agronomy for Sustainable Development, 35(2), 483–498. https://doi.org/10.1007/s13593-014-0273y
  • El-Sayed, S., Hassan, H., & Mahmoud, S. (2015). Effect of some soilless culture techniques on sweet pepper growth, production, leaves chemical contents and water consumption under greenhouse conditions. Middle East Journal, 4(4), 682–691.
  • Fedoroff, N. V. (2015). Food in a future of 10 billion. Agriculture & Food Security, 4(1), 11. https://doi.org/10.1186/s40066-015-0031-7
  • Feng, Q., An, C., Chen, Z., & Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable and Sustainable Energy Reviews, 133, 110293. https://doi.org/10.1016/j.rser.2020.110293
  • Fussy, A., & Papenbrock, J. (2022). An Overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants, 11(9), 1153. https://doi.org/10.3390/plants11091153
  • Gashgari, R., Alharbi, K., Mughrbil, K., Jan, A., & Glolam, A. (2018). Comparison between growing plants in hydroponic system and soil based system. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, 16 - 18 August 2018. Paper No. ICMIE 131. https://doi.org/10.11159/icmie18.131
  • Ghanayem, A., Almohamed, S., Al Assaf, A., & Majdalawi, M. (2022). Socioeconomic analysis of soil-less farming system-A comparative evidence from Jordan, the middle East. International Journal of Food and Agricultural Economics, 10(3), 205–222.
  • Gibbons, G. M. (2020). An economic comparison of two leading aquaponic technologies using cost benefit analysis: The coupled and decoupled systems. [ Master’s thesis. Department of Applied Economics, Utah State University]. https://digitalcommons.usu.edu/etd/7823
  • Gonnella, M., & Renna, M. (2021). The evolution of soilless systems towards ecological sustainability in the perspective of a circular economy. Is it really the opposite of organic agriculture? Agronomy, 11(5), 950. https://doi.org/10.3390/agronomy11050950
  • Goodman, W., & Minner, J. (2019). Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy, 83(1), 160–173. https://doi.org/10.1016/j.landusepol.2018.12.038
  • Halbert-Howard, A., Häfner, F., Karlowsky, S., Schwarz, D., & Krause, A. (2021). Evaluating recycling fertilizers for tomato cultivation in hydroponics and their impact on greenhouse gas emissions. Environmental Science and Pollution Research, 28(42), 59284–59303. https://doi.org/10.1007/s11356-020-10461-4
  • Hidaka, K., Nakahara, S., Yasutake, D., Zhang, Y., Okayasu, T., Dan, K., & Sone, K. (2022). Crop-local CO2 enrichment improves strawberry yield and fuel use efficiency in protected cultivations. Scientia Horticulturae, 301, 111104. https://doi.org/10.1016/j.scienta.2022.111104
  • Huang, X., Swain, D., & Hall, A. D. (2020). Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Science Advances, 6(29), 1–13. https://doi.org/10.1126/sciadv.aba1323
  • Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171. https://doi.org/10.1038/nclimate2837
  • Jayachandran, A., Shikha, J., Shikha, S., Poonam, M., Subhashree, S., Kuldeep, K., & Bhargav, K. (2022). Hydroponics: An art of soil less farming. The Pharma Innovation Journal, 11(9), 1049–1053.
  • Joshi, D., Nainabasti, A., Awasthi, R., Banjade, D., Malla, S., & Subedi, B. (2022). A review onsoilless cultivation: The hope of urban agriculture. Archives of Agriculture and Environmental Science, 7(3), 473–481. https://doi.org/10.26832/24566632.2022.0703022
  • Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. 2019. Aquaponics: Closing the cycle on limited water, land and nutrient resources, pp: 19-34. In S. S. Goddek, G. Alyssa, J. Benz, K. Gavin, & M. Burnell (Eds.), Aquaponics food production systems, (pp. 19–34). https://doi.org/10.1007/978-3-030-15943-6_2
  • Kalantari, F., Tahir, O., Joni, R., & Fatemi, E. (2018). Opportunities and challenges in sustainability of vertical farming: A review. Journal of Landscape Ecology, 11(1), 35–60. https://doi.org/10.1515/jlecol-2017-0016
  • Kalantari, F., Tahir, O., Lahijani, A., & Kalantari, S. (2017). A review of vertical farming technology: A guide for implementation of building integrated agriculture in cities. Advanced Engineering Forum, 24, 76–91. https://doi.org/10.4028/www.scientific.net/AEF.24.76
  • Karlowsky, S., Gläser, M., Henschel, K., & Schwarz, D. (2021). Seasonal nitrous oxide emissions from hydroponic tomato and cucumber cultivation in a commercial greenhouse company. Frontiers in Sustainable Food Systems, 5, 626053. https://doi.org/10.3389/fsufs.2021.626053
  • Khan, F. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture Environment and Food Sciences, 2(2), 59–66. https://doi.org/10.31015/jaefs.18010
  • Lakhiar, I., Gao, J., Syed, T., Chandio, F., Tunio, M., Ahmad, F., & Solangi, K. (2020). Overview of the aeroponic agriculture – an emerging technology for global food security. International Journal of Agricultural and Biological Engineering, 13(1), 1–10. https://doi.org/10.25165/j.ijabe.20201301.5156
  • Lazo, P., & Gonzabay, J. (2020). Economic analysis of hydroponic lettuce under floating root system in semi-arid climate. La Granja, 31, 121–133. https://doi.org/10.17163/lgr.n31.2020.09
  • Lee, G., Lee, H., & Lee, J. (2015). Greenhouse gas emission reduction effect in the transportation sector by urban agriculture in Seoul, Korea. Landscape and Urban Planning, 140(2), 1–7. https://doi.org/10.1016/j.landurbplan.2015.03.012
  • Leridon, H. (2020). Population mondiale : vers une explosion ou une implosion ? Population & Sociétés, N° 573(1), 1–4. https://doi.org/10.3917/popsoc.573.0001
  • Majeed, A. (2018). Application of agrochemicals in agriculture: Benefits, risks and responsibility of stakeholders. Journal of Food Sciences Toxicol, 2(3), 1–2.
  • Martin, M., & Molin, E. (2019). Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability, 11(15), 1–14. https://doi.org/10.3390/su11154124
  • Massa, D., Magán, J., Montesano, F., & Tzortzakis, N. (2020). Minimizing water and nutrient losses from soilless cropping in southern Europe. Agricultural Water Management, 241, 106395. https://doi.org/10.1016/j.agwat.2020.106395
  • Matthieu, D., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Proceedings of the World Government Summit, Dubai, UAE. (pp.11–13).
  • Maye, D. (2019). Smart food city: Conceptual relations between smart city planning, urban food systems and innovation theory. City, Culture & Society, 16, 18–24. https://doi.org/10.1016/j.ccs.2017.12.001
  • Michelon, N., Pennisi, G., Myint, N., Dall’olio, G., Batista, L., Salviano, A., Gruda, N., Orsini, F., & Gianquinto, G. (2020). Strategies for improved yield and water use efficiency of Lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy, 10(9), 1–14. https://doi.org/10.3390/agronomy10091379
  • Muller, A., Ferré, M., Engel, S., Gattinger, A., Holzkämper, A., Huber, R., & Six, J. (2017). Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy, 69, 102–105. https://doi.org/10.1016/j.landusepol.2017.09.014
  • Mushtaq, S. (2021). Hydroponics-plant without soil. Just Agriculture Multidisciplinary Newsletter, 2(2), 1–6.
  • Nejatian, A., Ganan, A., & Belgacem, A. (2016). Factors affecting the adoption of soilless production system in UAE. International Journal of Agricultural Extension, 4(2), 119–131.
  • Newell, R., Newman, L., Dickson, M., Vanderkooi, B., Fernback, T., White, C., & Bataille, C. (2021). Hydroponic fodder and greenhouse gas emissions: A potential avenue for climate mitigation strategy and policy development. Facets, 6, 334–357. https://doi.org/10.1139/facets-2020-0066
  • Olubanjo, O., & Alade, A. (2018). Growth and yield response of tomato plants grown under different substrates culture. Journal of Sustainable Technology, 9(2), 110–123.
  • Pascual, M., Lorenzo, G., & Gabriel, A. (2018). Vertical farming using hydroponic system: Toward a sustainable onion production in Nueva Ecija, Philippines. Open Journal of Ecology, 8(1), 25–41. https://doi.org/10.4236/oje.2018.81003
  • Pinstrup-Andersen, P. (2018). Is it time to take vertical indoor farming seriously? Global Food Security, 17, 233–235. https://doi.org/10.1016/j.gfs.2017.09.002
  • Pomoni, D., Koukou, M., Vrachopoulos, M., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690
  • Pradhan, B., & Deo, B. (2019). Soilless culture-the next generation green revolution. Current Science, 116(5), 728–732. https://doi.org/10.18520/cs/v116/i5/728-732
  • Puigdueta, I., Aguilera, E., Cruz, J., Iglesias, A., & Sanz-Cobena, A. (2021). Urban agriculture may change food consumption towards low carbon diets. Global Food Security, 28, 100507. https://doi.org/10.1016/j.gfs.2021.100507
  • Rai, H., Singh, M., Mishra, A., & Solanki, A. (2022). Hydroponic farming as a contemporary, dependable, and efficient agricultural system: Overview. In D. Goyal, A. Kumar, V. Piuri, & M. Paprzycki (Eds.), Algorithms for Intelligent Systems. Proceedings of the Third International Conference on Information Management and Machine Intelligence, Singapore (pp. 141–147). Springer. https://doi.org/10.1007/978-981-19-2065-31
  • Saha, G. (2021). Technological influences on monitoring and automation of the hydroponics system. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1–8). IEEE. https://doi.org/10.1109/I-PACT52855.2021.9696519
  • Sakamoto, M., & Suzuki, T. (2020). Effect of nutrient solution concentration on the growth of hydroponic sweet potato. Agronomy, 10(11), 1708. https://doi.org/10.3390/agronomy10111708
  • Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., & Terzano, R. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10, 923. https://doi.org/10.3389/fpls.2019.00923
  • Sandi, S., Rodriguez, F., Saintilan, N., Wen, L., Kuczera, G., Riccardi, G., & Saco, P. (2020). Resilience to drought of dryland wetlands threatened by climate change. Scientific Reports, 10(1), 13232. https://doi.org/10.1038/s41598-020-70087-x
  • Sarkar, A., & Majumder, M. (2015). Opportunities and challenges in sustainability of vertical eco-farming: A review. Journal of Advanced Agricultural Technologies, 2(2), 98–105. https://doi.org/10.12720/joaat.2.2.98-105
  • Shang, Q., & Shen, G. (2018). Effect of ammonium/nitrate ratio on pak choi (Brassica chinensisL.) photosynthetic capacity and biomass accumulation under low light intensity and water deficit. Photosynthetica, 56(4), 1039–1046. https://doi.org/10.1007/s11099-018-0815-7
  • Sharma, N., Acharya, S., Kumar, N., & Chaurasia, P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364–371. https://doi.org/10.5958/2455-7145.2018.00056.5
  • Souza, V., Gimenes, R., de Almeida, M., Farinha, M., Bernardo, L., & Ruviaro, C. (2023). Economic feasibility of adopting a hydroponics system on substrate in small rural properties. Clean Technologies and Environmental Policy, 1–15. https://doi.org/10.1007/s10098-023-02529-9
  • Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U., & Sawicka, M. (2015). Farming in and on urban buildings: Present practice and specific novelties of zero-acreage farming (ZFarming). Renewable Agriculture and Food Systems, 30(1), 43–54. https://doi.org/10.1017/S1742170514000143
  • Thompson, R., Incrocci, L., van Ruijven, J., & Massa, D. (2020). Reducing contamination of water bodies from European vegetable production systems. Agricultural Water Management, 240, 106258. https://doi.org/10.1016/j.agwat.2020.106258
  • Touliatos, D., Dodd, I., & McAinsh, M. (2016). Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, 5(3), 184–191. https://doi.org/10.1002/fes3.83
  • Tzortzakis, N., Nicola, S., Savvas, D., & Voogt, W. (2020). Editorial: Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Frontiers in Plant Science, 11(363), 1–3. https://doi.org/10.3389/fpls.2020.00363
  • Vander Esch, S., Ten Brink, B., Stehfest, E., Bakkenes, M., Sewell, A., Bouwman, A., & Doelman, J. (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD global land outlook. PBL Netherlands Environmental Assessment Agency. 01-08-2017.
  • Van Ginkel, S., Igou, T., & Chen, Y. (2017). Energy, water and nutrient impacts of California- grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resource, Conservation and Recycling, 122, 319–325. https://doi.org/10.1016/j.resconrec.2017.03.003
  • Velazquez-Gonzalez, R., Garcia-Garcia, A., Ventura-Zapata, E., Barceinas-Sanchez, J., & Sosa-Savedra, J. (2022). A review on hydroponics and the technologies associated for medium-and small-scale operations. Agriculture, 12(5), 646. https://doi.org/10.3390/agriculture12050646
  • Waiba, M. K., Sharma, P., Sharma, A., Chadha, S., & Kaur, M. (2020). Soil-less vegetable cultivation: A review. Journal of Pharmacognosy & Phytochemistry, 9(1), 631–636. http://www.phytojournal.com/archives/2020.v9.i1.10514/soil-less-vegetable-cultivation-a-review
  • Yıldız, S., Dasgan, H., & Dere, S. (2018). Comparison of substrate, hydroponic and aeroponics cultivation systems for the production of carrot root. In International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International 1273 (pp. 107–114). https://doi.org/10.17660/ActaHortic.2020.1273.15
  • Zaini, A., Maqshuddi, I., & Juraemi, J. (2018). The income analysis of vegetables farming with hydroponic system in Samarinda city, Indonesia. Advances in Social Sciences Research Journal, 5(3), 163–169. https://doi.org/10.14738/assrj.53.4270
  • Zhang, C., Yang, Y., Yang, D., & Wu, X. (2020). Multidimensional assessment of global dryland changes under future warming in climate projections. Journal of Hydrology, 592, 125618. https://doi.org/10.1016/j.jhydrol.2020.125618