536
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Fe and Zn-loaded cotton-sticks biochar and organic amendments improves chickpea production by enhancing ionic uptake and chemical properties of sandy soils

, , ORCID Icon, , , , , , , & show all
Article: 2265110 | Received 10 Jul 2023, Accepted 26 Sep 2023, Published online: 08 Oct 2023

References

  • Abbas, G., Khan, M. Q., Jamil, M., Tahir, M., & Hussain, F. (2009). Nutrient uptake, growth and yield of wheat (Triticum aestivum) as affected by zinc application rates. International Journal of Agriculture & Biology, 11, 389–21. http://www.fspublishers.org/
  • Ahmad, W., Khan, A., Zeeshan, M., Ahmad, I., Adnan, M., Fahad, S., Solaiman, Z., & Solaiman, Z. (2022). Relative efficiency of biochar particles of different sizes for immobilising heavy metals and improving soil properties. Crop and Pasture Science, 74(2), 112–120. https://doi.org/10.1071/CP20453
  • Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
  • Alharby, H. F., & Fahad, S. (2020). Melatonin application enhances biochar efficiency for drought tolerance in maize varieties: Modifications in physio‐biochemical machinery. Agronomy Journal, 112(4), 2826–2847. https://doi.org/10.1002/agj2.20263
  • Amin, A. E., & Mihoub, A. (2021). Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus Spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. Journal of Soil Science and Plant Nutrition, 21(3), 2041–2047. https://doi.org/10.1007/s42729-021-00500-5
  • Arif, M., Liu, G., Ur Rehman, M. Z., Yousaf, B., Ahmed, R., Mian, M. M., Ashraf, A., Munir, M. A. M., Rashid, M. S., & Naeem, A. (2022). Carbon dioxide activated biochar-clay mineral composite efficiently removes ciprofloxacin from contaminated water-reveals an incubation study. Journal of Cleaner Production, 332, 130079. https://doi.org/10.1016/j.jclepro.2021.130079
  • Babar, M., Munir, H. M. S., Nawaz, A., Ramzan, N., Azhar, U., Sagir, M., Tahir, M. S., Ikhlaq, A., Mubashir, M., Khoo, K. S., & Chew, K. W. (2022). Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution. Chemosphere, 307, 135738. https://doi.org/10.1016/j.chemosphere.2022.135738
  • Bamagoos, A., Alharby, H., & Fahad, S. (2021). Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiology & Molecular Biology of Plants, 27(9), 2083–2100. https://doi.org/10.1016/j.sjbs.2021.09.035
  • Bar El Dadon, S., Abbo, S., & Reifen, R. (2017). Leveraging traditional crops for better nutrition and health—the case of chickpea. Trends in Food Science & Technology, 64, 39–47. https://doi.org/10.1016/j.tifs.2017.04.002
  • Bashir, A., Rizwan, M., Ali, S., Adrees, M., Rehman, M. Z., & Qayyum, M. F. (2020). Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; a life cycle study. Environmental Science and Pollution Research, 27(19), 23926–23936. https://doi.org/10.1007/s11356-020-08739-8
  • Batool, S., Asghar, H. N., Shehzad, M. A., Yasin, S., Sohaib, M., Nawaz, F., Akhtar, G., Mubeen, K., Zahir, Z. A., & Uzair, M. (2021). Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L.). Journal of Soil Science and Plant Nutrition, 21(3), 2456–2471. https://doi.org/10.1007/s42729-021-00537-6
  • Bremner, J. M. (1965). Total nitrogen. Methods of soil analysis: Part 2 chemical and microbiological properties. 9, 1149–1178. https://doi.org/10.2134/agronmonogr9.2.c32
  • Bruun, E. W., Petersen, C. T., Hansen, E., Holm, J. K., & Hauggaard‐Nielsen, H. (2014). Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30(1), 109–118. https://doi.org/10.1111/sum.12102
  • Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration. Soil Biology and Biochemistry, 51, 125–134. https://doi.org/10.1016/j.soilbio.2012.03.017
  • Chandrika, K. P., Qureshi, A. A., Singh, A., Sarada, C., & Gopalan, B. (2022). Fe and Zn metal nanocitrates as plant nutrients through soil application. ACS Omega, 7(49), 45481–45492. https://doi.org/10.1021/acsomega.2c06096
  • Correa, O. S., Montecchia, M. S., Berti, M. F., Ferrari, M. C. F., Pucheu, N. L., Kerber, N. L., & García, A. F. (2009). Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Applied Soil Ecology, 41(2), 185–194. https://doi.org/10.1016/j.apsoil.2008.10.007
  • Croker, J., Poss, R., Hartmann, C., & Bhuthorndharaj, S. (2004). Effects of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil. Plant and Soil, 267(1–2), 155–163. https://doi.org/10.1007/s11104-005-4641-x
  • Czaban, J., & Siebielec, G. (2013). Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Polish Journal of Environmental Studies, 22 (6), 1669–1676.
  • Danish, S., Zafar-Ul-Hye, M., Fahad, S., Saud, S., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability, 12(15), 6286. https://doi.org/10.3390/su12156286
  • Dawar, K., Fahad, S., Alam, S. S., Khan, S. A., Younis, A., Dawar, U., Datta, S., Danish, R., & Dick, R. P. (2021). Influence of variable biochar concentration on yield-scaled nitrous oxide emissions, wheat yield and nitrogen use efficiency. Scientific Reports, 11(1), 16774. https://doi.org/10.1038/s41598-021-96309-4
  • Dawar, K., Fahad, S., Jahangir, M. M. R., Munir, I., Alam, S. S., Khan, S. A., Mian, I. A., Datta, R., Saud, S., Banout, J., Adnan, M., Ahmad, M. N., Khan, A., Dewil, R., Habib-Ur-Rahman, M., Ansari, M. J., & Danish, S. (2021). Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil. Scientific Reports, 11(1), 17413. https://doi.org/10.1038/s41598-021-96771-0
  • de Jesus Duarte, S., Glaser, B., & Pellegrino Cerri, C. E. (2019). Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy, 9(4), 165. https://doi.org/10.3390/agronomy9040165
  • Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2013). Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65, 65–72. https://doi.org/10.1016/j.apsoil.2013.01.006
  • Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M. Z., Shah, A. N., Ullah, A., Khan, F., Ullah, S., & Alharby, H. (2016). A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 103, 191–198. https://doi.org/10.1016/j.plaphy.2016.03.001
  • Fahad, S., Hussain, S., Saud, S., Tanveer, M., Bajwa, A. A., Hassan, S., Shah, A. N., Ullah, A., Wu, C., Khan, F. A., Shah, F., Ullah, S., Chen, Y., & Huang, J. (2015). A biochar application protects rice pollen from high-temperature stress. Plant Physiology and Biochemistry, 96, 281–287. https://doi.org/10.1016/j.plaphy.2015.08.009
  • Fatima, B., Bibi, F., Ali, M. I., Woods, J., Ahmad, M., Mubashir, M., Khan, M. S., Bokhari, A., & Khoo, K. S. (2022). Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. Waste Management, 153, 197–208. https://doi.org/10.1016/j.wasman.2022.08.016
  • François, M., Lin, K. S., Rachmadona, N., & Khoo, K. S. (2023). Advancement of biochar-aided with iron chloride for contaminants removal from wastewater and biogas production: A review. Science of the Total Environment, 874, 162437. https://doi.org/10.1016/j.scitotenv.2023.162437
  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. https://doi.org/10.13031/2013.25409
  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus cycling in biochar-amended soils. Soil Biology and Biochemistry, 103, 1–15. https://doi.org/10.1016/j.soilbio.2016.08.001
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015
  • Gul, S., Winans, K. S., Leila, M., & Whalen, J. K. (2014). Sustaining soil carbon in bioenergy cropping systems of northern temperate regions. CABI Reviews, 9, 1–23. https://doi.org/10.1079/PAVSNNR20149026
  • Hajarpoor, A., Soltani, A., Zeinali, E., & Sayyedi, F. (2014). Simulating climate change impacts on production of chickpea under water-limited conditions. Agriculture Science Developments, 3 (6), 209–217.
  • Hameeda, G., Manzoor, G., Bano, M., Chandio, T. A., & Awan, A. A. (2019). Biochar and manure influences tomato fruit yield, heavy metal accumulation and concentration of soil nutrients under wastewater irrigation in arid climatic conditions. Cogent Food & Agriculture, 5(1), 1576406. https://doi.org/10.1080/23311932.2019.1576406
  • Herawati, A., Syamsiyah, J., Baldan, S. K., & Arifin, I. (2021). Application of soil amendments as a strategy for water holding capacity in sandy soils. In IOP Conference Series: Earth and Environmental Science, 724, 012014. IOP Publishing. https://doi.org/10.1088/1755-1315/724/1/012014
  • He, H., Wu, M., Su, R., Zhang, Z., Chang, C., Peng, Q., Dong, Z., Pang, J., & Lambers, H. (2021). Strong phosphorus (P)-zinc (Zn) interactions in a calcareous soil-alfalfa system suggest that rational P fertilization should be considered for Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils. Plant and Soil, 461(1–2), 119–134. https://doi.org/10.1007/s11104-020-04793-w
  • Iratkar, A. G., Giri, J. D., Kadam, M. M., Giri, J. N., & Dabhade, M. B. (2014). Distribution of DTPA extractable micronutrients and their relationship with soil properties in soil of parsori watershed of Nagpur district of Maharashtra. Asian Journal of Soil Science, 9, 297–299. http://www.researchjournal.co.in/onli
  • Irfan, M., Dawar, K., Fahad, S., Mehmood, I., Alamri, S., Siddiqui, M. H., Saud, S., Khattak, J. Z. K., Ali, S., Hassan, S., & Nawaz, T. (2022). Exploring the potential effect of achnatherum splendens L.–derived biochar treated with phosphoric acid on bioavailability of cadmium and wheat growth in contaminated soil. Environmental Science and Pollution Research, 29(25), 37676–37684. https://doi.org/10.1007/s11356-021-17950-0
  • Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., Ali, W., Fahad, S., Saud, S., Hayat, Z., Nawaz, T., Khan, S. A., Alam, S., Ali, B., Banout, J., Ahmed, S., Mubeen, S., Danish, S. … Elgorban, A. M. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 18416. https://doi.org/10.1038/s41598-021-97525-8
  • Jackson, M. L. (1962). Soil chemical analysis, constable and co. Ltd. London. ( 497).
  • Jones, J. B., Jr., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Inc.
  • Khan, M. I., Afzal, M. J., Bashir, S., Naveed, M., Anum, S., Cheema, S. A., Wakeel, A., Sanaullah, M., Ali, M. H., & Chen, Z. (2021). Improving nutrient uptake, growth, yield and protein content in chickpea by the co-addition of phosphorus fertilizers, organic manures, and bacillus sp. Mn-54. Agronomy, 11(3), 436. https://doi.org/10.3390/agronomy11030436
  • Khan, S., Shah, Z., Mian, I. A., Dawar, K., Tariq, M., Khan, B., Mussarat, M., Amin, H., Ismail, M., Ali, S., & Shah, T. (2020). Soil fertility, N2 fixation and yield of chickpea as influenced by long-term biochar application under mung–chickpea cropping system. Sustainability, 12(21), 9008. https://doi.org/10.3390/su12219008
  • Kim, H. Y., Lim, S. S., Kwak, J. H., Lee, S., Lee, D. S., Hao, X., Yoon, K. S., & Choi, W. J. (2011). Soil and compost type affect phosphorus leaching from inceptisol, ultisol, and andisol in a column experiment. Communication in Soil Science and Plant Analysis, 42(18), 2188–2199. https://doi.org/10.1080/00103624.2011.602450
  • Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., Chen, Z., & Guo, D. (2015). Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, 313–320. https://doi.org/10.1016/j.catena.2015.08.013
  • Lentz, R. D., & Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033–1043. https://doi.org/10.2134/jeq2011.0126
  • Liu, B., Li, H., Li, H., Zhang, A., & Rengel, Z. (2021). Long‐term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. Global Change Biology Bioenergy, 13, 257–268. https://doi.org/10.1111/gcbb.12766
  • Lusiba, S., Odhiambo, J., & Ogola, J. (2018). Growth, yield and water use efficiency of chickpea (Cicer Arietinum): Response to biochar and phosphorus fertilizer application. Archives of Agronomy and Soil Science, 64(6), 819–833. https://doi.org/10.1080/03650340.2017.1407027
  • Mahmoud, A. W. M., Ayad, A. A., Abdel-Aziz, H. S., Williams, L. L., El-Shazoly, R. M., Abdel-Wahab, A., & Abdeldaym, E. A. (2022). Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants, 11(19), 2599. https://doi.org/10.3390/plants11192599
  • Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Assessment of the nutritional status of plants: Principles and applications (2nd ed.).ABPPF.
  • Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. Academic Press.
  • Mawof, A., Prasher, S., Bayen, S., & Nzediegwu, C. (2021). Effects of biochar and biochar-compost mix as soil amendments on soil quality and yield of potatoes irrigated with wastewater. Journal of Soil Science and Plant Nutrition, 21(4), 2600–2612. https://doi.org/10.1007/s42729-021-00549-2
  • Mihoub, A., Amin, A. E., Motaghian, H. R., Saeed, M. F., & Naeem, A. (2022). Citric Acid (CA)–Modified biochar improved available phosphorus concentration and its half-life in a P-Fertilized calcareous Sandy Soil. Journal of Soil Science and Plant Nutrition, 22(1), 465–474. https://doi.org/10.1007/s42729-021-00662-2
  • Miller, G. W., Denney, A., Pushnik, J., & Ming-Ho, Y. (1982). The formation of delta-aminolevulinate a precursor of chlorophyll in barley and the role of iron. Journal of Plant Nutrition, 5(4–7), 289–300. https://doi.org/10.1080/01904168209362958
  • Moodie, C. D., & McGreery, R. A. (1959). Laboratory manual for soil fertility development in corn (Zea mays L.) and subsequent grain yield. Crop Science, 11, 368–372.
  • Mustafa, G., Shehzad, M. A., Tahir, M. H. N., Nawaz, F., Akhtar, G., Bashir, M. A., & Ghaffar, A. (2022). Pretreatment with chitosan arbitrates physiological processes and antioxidant defense system to increase drought tolerance in alfalfa (Medicago sativa L.). Journal of Soil Science and Plant Nutrition, 22(2), 2169–2186. https://doi.org/10.1007/s42729-022-00801-3
  • Nadeem, S. M., Imran, M., Naveed, M., Khan, M. Y., Ahmad, M., Zahir, Z. A., & Crowley, D. E. (2017). Synergistic use of biochar, compost and plant growth‐promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. Journal of the Science of Food and Agriculture, 97(15), 5139–5145. https://doi.org/10.1002/jsfa.8393
  • Nawaz, F., Rafeeq, R., Majeed, S., Ismail, M. S., Ahsan, M., Ahmad, K. S., Akram, A., & Haider, G. (2023). Biochar amendment in combination with endophytic bacteria stimulates photosynthetic activity and antioxidant enzymes to improve soybean yield under drought stress. Journal of Soil Science and Plant Nutrition, 23(1), 746–760. https://doi.org/10.1007/s42729-022-01079-1
  • Ogola, J. B. O., Macil, P. J., & Odhiambo, J. J. O. (2021). Biochar application and rhizobium inoculation increased intercepted radiation and yield of chickpea in contrasting soil types. International Journal of Plant Production, 15(2), 219–229. https://doi.org/10.1007/s42106-021-00141-9
  • Osman, K. T. (2018). Sandy Soils. In Management of soil problems (pp. 37–65). Springer International Publishing. https://doi.org/10.1007/978-3-319-75527-4_3
  • Pal, V., Singh, G., & Dhaliwal, S. S. (2019). Agronomic biofortification of chickpea with zinc and iron through application of zinc and urea. Communications in Soil Science and Plant Analysis, 50(15), 1864–1877. https://doi.org/10.1080/00103624.2019.1648490
  • Paramesh, V., Dhar, S., Dass, A., Kumar, B., Kumar, A., El-Ansary, D. O., & Elansary, H. O. (2020). Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustainability, 12(9), 3513. https://doi.org/10.3390/su12093513
  • Paymaneh, Z., Gryndler, M., Konvalinková, T., Benada, O., Borovička, J., Bukovská, P., Püschel, D., Řezáčová, V., Sarcheshmehpour, M., & Jansa, J. (2018). Soil matrix determines the outcome of interaction between mycorrhizal symbiosis and biochar for Andropogon gerardii growth and nutrition. Frontiers in Microbiology, 9, 2862. https://doi.org/10.3389/fmicb.2018.02862
  • Pradhan, S., Mackey, H. R., Al-Ansari, T. A., & McKay, G. (2022). Biochar from food waste: A sustainable amendment to reduce water stress and improve the growth of chickpea plants. Biomass Conversion and Biorefinery, 12(10), 4549–4562. https://doi.org/10.1007/s13399-022-02575-1
  • Rahi, A. A., Younis, U., Ahmed, N., Ali, M. A., Fahad, S., Sultan, H., Zarei, T., Danish, S., Taban, S., El Enshasy, H. A., & Tamunaidu, P. (2022). Toxicity of cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility. Saudi Journal of Biological Sciences, 29(2), 743–750. https://doi.org/10.1016/j.sjbs.2021.09.035
  • Reverchon, F., Flicker, R. C., Yang, H., Yan, G., Xu, Z., Chen, C., Hosseini Bai, S., & Zhang, D. (2014). Changes in δ 15 N in a soil–plant system under different biochar feedstocks and application rates. Biology and Fertility of Soils, 50(2), 275–283. https://doi.org/10.1007/s00374-013-0850-2
  • Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern mollisols and maize nutrient availability. Geoderma, 230, 340–347. https://doi.org/10.1016/j.geoderma.2014.04.009
  • Roosta, H. R., Estaji, A., & Niknam, F. (2018). Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 56(2), 606–615. https://doi.org/10.1007/s11099-017-0696-1
  • Saxena, J., Rana, G., & Pandey, M. (2013). Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae, 162, 351–356. https://doi.org/10.1016/j.scienta.2013.08.002
  • Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  • Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M., & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421. https://doi.org/10.3390/plants10020421
  • Sg, L., Jjo, O., Adeleke, R., & Rhizosphere, M. S. (2021). The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere, 17, 100289. https://doi.org/10.1016/j.rhisph.2020.100289
  • Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., Kubar, K. A., Ali, U., Rana, M. S., Mehmood, M. A., & Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. https://doi.org/10.1016/j.jenvman.2018.09.006
  • Shrivastava, S., Jain, A. K., & Arya, V. (2018). Response of organic manure, zinc and iron on soil properties, yield and nutrient uptake by pearl millet crop grown in inceptisoi. International Journal of Pure & Applied Bioscience, 6(1), 426–435. https://doi.org/10.18782/2320-7051.4026
  • Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., & Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39(4), 1224–1235. https://doi.org/10.2134/jeq2009.0138
  • Solaiman, Z. M., Shafi, M. I., Beamont, E., & Anawar, H. M. (2020). Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture, 10(10), 480. https://doi.org/10.3390/agriculture10100480
  • Sukartono, S. (2011). Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture, 49, 47–52.
  • Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management, 21(1), 37–49. https://doi.org/10.1080/15324980601087430
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012). A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 353(1–2), 73–84. https://doi.org/10.1007/s11104-011-1010-9
  • Ullah, A., Farooq, M., Rehman, A., Hussain, M., & Siddique, K. H. (2020). Zinc nutrition in chickpea (Cicer arietinum): A review. Crop & pasture science, 71, 199–218. https://doi.org/10.1071/CP19357
  • Ullah, I., Muhammad, D., Mussarat, M., Khan, S., Adnan, M., Fahad, S., Ismail, M., Mian, I. A., Ali, A., Saleem, M. H., Saeed, M., Gul, F., Ibrahim, M., Raza, M. A. S., Hammad, H. M., Nasim, W., Saud, S., Khattak, J. Z. K. … Khan, S. M. (2022). Comparative effects of biochar and NPK on wheat crops under different management systems. Crop and Pasture Science, 74(2), 31–40. https://doi.org/10.1071/CP21146
  • Van Asperen, H. L., Bor, A. M. C., Sonneveld, M. P. W., Bruins, H. J., & Lazarovitch, N. (2014). Properties of anthropogenic soils in ancient run-off capturing agricultural terraces in the central Negev desert (Israel) and related effects of biochar and ash on crop growth. Plant and Soil, 374(1–2), 779–792. https://doi.org/10.1007/s11104-013-1901-z
  • Wali, F., Naveed, M., Bashir, M. A., Asif, M., Ahmad, Z., Alkahtani, J., Alwahibi, M. S., & Elshikh, M. S. (2020). Formulation of biochar-based phosphorus fertilizer and its impact on both soil properties and chickpea growth performance. Sustainability, 12(22), 9528. https://doi.org/10.3390/su12229528
  • Wolf, B. (1982). A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Communication in Soil Science and Plant Analysis, 13(12), 1035–1059. https://doi.org/10.1080/00103628209367332
  • Yao, Y., Gao, B., Wu, F., Zhang, C., & Yang, L. (2015). Engineered biochar from biofuel residue: Characterization and its silver removal potential. ACS Applied Materials & Interfaces, 7(19), 10634–10640. https://doi.org/10.1021/acsami.5b03131
  • Zhang, D., Wang, Y., Tang, X., Zhang, A., Li, H., & Rengel, Z. (2019). Early priority effects of occupying a nutrient patch do not influence final maize growth in intensive cropping systems. Plant and Soil, 442(1–2), 285–298. https://doi.org/10.1007/s11104-019-04155-1
  • Zhang, X., Zhang, F., & Mao, D. (1998). Effect of iron plaque outside roots on nutrient uptake by rice (oryza sativa L.). Zinc uptake by Fe-deficient rice. Plant and Soil, 202(1), 33–39. https://doi.org/10.1023/A:1004322130940
  • Zhu, Q., Liu, X., Hao, T., Zeng, M., Shen, J., Zhang, F., & Vries, W. D. (2018). Modeling soil acidification in typical Chinese cropping systems. Science of the Total Environment, 613-614, 1339–1348. https://doi.org/10.1016/j.scitotenv.2017.06.257
  • Ziadi, N., Whalen, J. K., Messiga, A. J., & Morel, C. (2014). Assessment and modeling of soil available phosphorus in sustainable cropping systems. Advances in Agronomy, 122, 85–126. https://doi.org/10.1016/B978-0-12-417187-9.00002-4
  • Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory produced black carbon (biochar). Environmental Science & Technology, 44(4), 1295–1301. https://doi.org/10.1021/es903140c
  • Zingore, S., Delve, R. J., Nyamangara, J., & Giller, K. E. (2008). Multiple benefits of manure: The key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutrient Cycling in Agroecosystems, 80(3), 267–282. https://doi.org/10.1007/s10705-007-9142-2