526
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Dissipation profile and risk assessment of diflubenzuron and novaluron in tomato fruits under greenhouse conditions

, , , , & ORCID Icon
Article: 2275393 | Received 10 Aug 2023, Accepted 19 Oct 2023, Published online: 03 Nov 2023

References

  • Abdallah, O., Abdel Ghani, S., & Hrouzková, S. (2017). Development of validated LC-MS/MS method for imidacloprid and acetamiprid in parsley and rocket and evaluation of their dissipation dynamics. Journal of Liquid Chromatography & Related Technologies, 40(8), 392–13. https://doi.org/10.1080/10826076.2017.1310112
  • Abdallah, O. I., Abd El-Hamid, R. M., & Raheem, E. H. A. (2019a). Clothianidin residues in green bean, pepper and watermelon crops and dietary exposure evaluation based on dispersive liquid-liquid microextraction and LC–MS/MS. Journal of Consumer Protection and Food Safety, 14(3), 293–300. https://doi.org/10.1007/s00003-019-01218-4
  • Abdallah, O., El Agamy, M., Abdelraheem, E., & Malhat, F. (2019b). Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant. Biomedical Chromatography, 33(6), e4492. https://doi.org/10.1002/bmc.4492
  • Abdallah, O., Soliman, H., El-Hefny, D., Abd El-Hamid, R., & Malhat, F. (2021). Dissipation profile of sulfoxaflor on squash under Egyptian field conditions: A prelude to risk assessment. International Journal of Environmental Analytical Chemistry, 103(16), 1–15. https://doi.org/10.1080/03067319.2021.1915297
  • Abdallah, O. I., Abd El-Hamid, R. M., Ahmed, N. S., Saleh, S. M., & Alminderej, F. M. (2023). Terminal residues and risk assessment of Spiromesifen and Spirodiclofen in tomato fruits. Plants, 12(7), 1493. https://doi.org/10.3390/plants12071493
  • Abdallah, O. I., Ahmed, N. S., Abd El-Hamid, R. M., & Alhewairini, S. S. (2023). Residues of difenoconazole in various ready premixes with propiconazole, cyflufenamid, and mandipropamid in/on tomato fruits. Acta Chromatographica. https://doi.org/10.1556/1326.2023.01134
  • Algethami, J. S., Alhamami, M. A., Ramadan, M. F., & Abdallah, O. I. (2022). Residues of the acaricides abamectin, Hexythiazox, and Spiromesifen in eggplant (Solanum melongena L.) fruits grown under field conditions in Najran, Saudi Arabia. Agriculture, 13(1), 116. https://doi.org/10.3390/agriculture13010116
  • Ambrus, Á. (2009). Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed. Food and Agriculture Organization of the United Nations.
  • Anastassiadou, M., Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., & Leuschner, R. (2022). Review of the existing maximum residue levels for novaluron according to article 12 of Regulation (EC) no 396/2005. The EFSA Journal, 20(1). https://doi.org/10.2903/j.efsa.2022.7041
  • Arrebola, F. J., Egea‐González, F. J., Moreno, M., Fernández‐Gutiérrez, A., Hernández‐Torres, M. E., & Martínez‐Vidal, J. L. (2001). Evaluation of endosulfan residues in vegetables grown in greenhouses. Pest Management Science: Formerly Pesticide Science, 57(7), 645–652. https://doi.org/10.1002/ps.332
  • Carvalho, J. D., & Pagliuca, L. G. (2007). Tomate, um mercado que não para de crescer globalmente. Hortifruti Brasil, 6(58), 6–14.
  • Chang, H.-R., You, J.-S., & Ban, S.-W. (2020). Residue dissipation kinetics and safety evaluation of insecticides on Strawberry for the harvest periods in plastic-covered greenhouse conditions. Korean Journal of Environmental Agriculture, 39(2), 122–129. https://doi.org/10.5338/KJEA.2020.39.2.16
  • Chen, L., Chen, J., Guo, Y., Li, J., Yang, Y., Xu, L., & Fu, F. (2014). Study on the simultaneous determination of seven benzoylurea pesticides in oolong tea and their leaching characteristics during infusing process by HPLC–MS/MS. Food Chemistry, 143, 405–410. https://doi.org/10.1016/j.foodchem.2013.08.027
  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://doi.org/10.3390/ijerph8051402
  • Das, P. (2007). Dissipation of novaluron in chilli and brinjal. ANSINET.
  • Dong, M., Ma, L., Zhan, X., Chen, J., Huang, L., Wang, W., & Zhao, L. (2019). Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment. Regulatory Toxicology and Pharmacology, 108, 104447. https://doi.org/10.1016/j.yrtph.2019.104447
  • Dong, M., Wen, G., Tang, H., Wang, T., Zhao, Z., Song, W., Wang, W., & Zhao, L. (2018). Dissipation and safety evaluation of novaluron, pyriproxyfen, thiacloprid and tolfenpyrad residues in the citrus-field ecosystem. Food Chemistry, 269, 136–141. https://doi.org/10.1016/j.foodchem.2018.07.005
  • EFSA, European Food Safety Authority. (2012). Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance diflubenzuron. The EFSA Journal, 10(9), 2870. https://doi.org/10.2903/j.efsa.2012.2870
  • Emekli, N. Y., Kendirli, B., & Kurunc, A. (2010). Structural analysis and functional characteristics of greenhouses in the Mediterranean region of Turkey. African Journal of Biotechnology, 9(21), 3131–3139.
  • EU-MRL. European Union Commission regulations for maximum residue limits of pesticides in foods and feeds. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls. (Accessed on 19/6/2023).
  • Fantke, P., & Juraske, R. (2013). Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology, 47(8), 3548–3562. https://doi.org/10.1021/es303525x
  • FAO (Food and Agriculture Organization of the United Nations). (2001). Pesticide residues in food—2001. In report of the joint meeting of the FAO Panel of experts on pesticide residues in food and the Environment and the WHO Core Assessment Group on pesticide residues. Food and Agricultural Organization.
  • FAOSTAT. Food and Agriculture Organization of the United Nations. Retrieved August 25, 2023 Available at http://www.fao.org/faostat/en/#data/QC.
  • Fenoll, J., Hellín, P., Camacho, M. D. M., Lopez, J., González, A., Lacasa, A., & Flores, P. (2008). Dissipation rates of procymidone and azoxystrobin in greenhouse grown lettuce and under cold storage conditions. International Journal of Environmental and Analytical Chemistry, 88(10), 737–746. https://doi.org/10.1080/03067310801975118
  • Ferrer, C., Lozano, A., Agüera, A., Girón, A. J., & Fernández-Alba, A. (2011). Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 1218(42), 7634–7639. https://doi.org/10.1016/j.chroma.2011.07.033
  • Grosscurt, A., & Jongsma, B. (1987). Mode of action and insecticidal properties of diflubenzuron (chitin and benzoylphenyl ureas. Springer.
  • Guedes, J. A. C., de Oliveira Silva, R., Lima, C. G., Milhome, M. A. L., & Do Nascimento, R. F. (2016). Matrix effect in guava multiresidue analysis by QuEChERS method and gas chromatography coupled to quadrupole mass spectrometry. Food Chemistry, 199, 380–386. https://doi.org/10.1016/j.foodchem.2015.12.007
  • Hingmire, S., Oulkar, D. P., Utture, S. C., Shabeer, T. A., & Banerjee, K. (2015). Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chemistry, 176, 145–151. https://doi.org/10.1016/j.foodchem.2014.12.049
  • Hlihor, R. M., Pogăcean, M. O., Simion, I. M., Cozma, P., Apostol, L. C., & Gavrilescu, M. (2016). Assessment of human health risk of twelve pesticides applied in double dose in an apple orchard. Annals of the Academy of Romanian Scientists Series on Physics and Chemistry, 1(1), 25–35.
  • Hoskins, W. (1961). Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Protection Bulletin, 9(163168), 214–215.
  • Hyeong Wook Jo, K. H., & Kyuwon, J. K. M. (2020). Dissipation pattern of Insecticide diflubenzuron on cucumber and shallot. The Korean Journal of Pesticide Science, 24(3), 304–311. https://doi.org/10.7585/kjps.2020.24.3.304
  • IRAC, Insecticide Resistance Action Committee. (2011). Tuta absoluta the tomato leafminer or tomato borer. Recommendations for Sustainable and Effective Resistance Management Insecticide Resistance Management.
  • Jankowska, M., Kaczynski, P., Hrynko, I., & Lozowicka, B. (2016). Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental Science and Pollution Research, 23(12), 11885–11900. https://doi.org/10.1007/s11356-016-6260-x
  • Katsoulas, N., Boulard, T., Tsiropoulos, N., Bartzanas, T., & Kittas, C. (2012). Experimental and modelling analysis of pesticide fate from greenhouses: The case of pyrimethanil on a tomato crop. Biosystems Engineering, 113(2), 195–206. https://doi.org/10.1016/j.biosystemseng.2012.07.007
  • Keith, L. H., & Walker, M. (1992). Epa’s pesticide fact sheet database. CRC Press.
  • López‐López, T., Martínez‐Vidal, J. L., Gil‐García, M. D., Martínez‐Galera, M., & Rodríguez‐Lallena, J. A. (2004). Benzoylphenylurea residues in peppers and zucchinis grown in greenhouses: determination of decline times and pre‐harvest intervals by modelling. Pest Management Science: Formerly Pesticide Science, 60(2), 183–190. https://doi.org/10.1002/ps.812
  • MacBean, C. E. Eds 2008-2010. E-pesticide manual 15th ver. 5.1 British Crop Protection Council. Diflubenzuron (35367-38-5)
  • Malhat, F. M., Loutfy, N. M., & Ahmed, M. T. (2014). Dissipation kinetics of novaluron in tomato, an arid ecosystem pilot study. Toxicological & Environmental Chemistry, 96(1), 41–47. https://doi.org/10.1080/02772248.2014.911538
  • Miliadis, G. E., Tsiropoulos, N. G., & Aplada-Sarlis, P. G. (1999). High-performance liquid chromatographic determination of benzoylurea insecticides residues in grapes and wine using liquid and solid-phase extraction. Journal of Chromatography A, 835(1–2), 113–120. https://doi.org/10.1016/S0021-9673(99)00053-9
  • Nakagawa, Y., Matsumura, F., & Hashino, Y. (1993). Effect of diflubenzuron on incorporation of [3H]-N-acetylglucosamine ([3H] NAGA) into chitin in the intact integument from the newly molted American cockroach Periplaneta americana. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 106(3), 711–715. https://doi.org/10.1016/0742-8413(93)90231-9
  • Nougadère, A., Reninger, J.-C., Volatier, J.-L., & Leblanc, J.-C. (2011). Chronic dietary risk characterization for pesticide residues: A ranking and scoring method integrating agricultural uses and food contamination data. Food and Chemical Toxicology, 49(7), 1484–1510. https://doi.org/10.1016/j.fct.2011.03.024
  • Olejnik, M., Jedziniak, P., Szprengier‐Juszkiewicz, T., & Żmudzki, J. (2013). Influence of matrix effect on the performance of the method for the official residue control of non‐steroidal anti‐inflammatory drugs in animal muscle. Rapid Communications in Mass Spectrometry, 27(3), 437–442. https://doi.org/10.1002/rcm.6467
  • SANTE/12682/2019. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf.
  • Sharma, K. K., Tripathy, V., Mohapatra, S., Matadha, N. Y., Pathan, A. R. K., Sharma, B. N., Dubey, J. K., Katna, S., George, T., Tayade, A., Sharma, K., Gupta, R., & Walia, S. (2021). Dissipation kinetics and consumer risk assessment of novaluron+ lambda-cyhalothrin co-formulation in cabbage. Ecotoxicology and Environmental Safety, 208, 111494. https://doi.org/10.1016/j.ecoenv.2020.111494
  • Si, W., Wang, T., Dong, M., Zhao, L., Wang, W., Zhao, Z., & Song, W. (2017). Assessment of safety for diflubenzuron residues in peach fruit after application in field. Acta Agriculturae Shanghai, 33(3), 71–75.
  • Tomlin, C. (1997). The pesticide manual 11th. British Crop Protection Council.
  • Tsiropoulos, N. G., Aplada-Sarlis, P. G., & Miliadis, G. E. (1999). Determination of benzoylurea insecticides in apples and pears by solid-phase extraction cleanup and liquid chromatography with UV detection. Journal of AOAC International, 82(1), 213–216. https://doi.org/10.1093/jaoac/82.1.213
  • Valverde Garcia, A., Gonzalez-Pradas, E., & Aguilera-Del Real, A. (1993). Analysis of buprofezin residues in vegetables. Application to the degradation study on eggplant grown in a greenhouse. Journal of Agricultural and Food Chemistry, 41(12), 2319–2323. https://doi.org/10.1021/jf00036a019
  • Valverde Garcia, A., Gonzalez-Pradas, E., Aguilera-Del Real, A., Ureña-Amate, M., & Camacho-Ferre, F. (1993). Determination and degradation study of chlorothalonil residues in cucumbers, peppers and cherry tomatoes. Analytica chimica acta, 276(1), 15–23. https://doi.org/10.1016/0003-2670(93)85034-H
  • VSS, T., Patil, P., & Kannan, K. (2020). Pesticide Residue in Mango Orchards and health risk. Acta scientific microbiology, 3(9), 08–14.
  • WHO. (2003). Gems/food regional diets (regional per capita consumption of raw and semi‐processed agricultural commodities). Global Environment Monitoring System/Food Contamination Monitoring and Assessment Programme. https://iris.who.int/handle/10665/42833
  • Wimmer, M. J., Smith, R. R., & Jones, J. P. (1991). Analysis of diflubenzuron by gas chromatography/mass spectrometry using deuterated diflubenzuron as internal standard. Journal of Agricultural and Food Chemistry, 39(2), 280–286. https://doi.org/10.1021/jf00002a012
  • Yalçın, M., Turgut, N., Gökbulut, C., Mermer, S., Sofuoğlu, S. C., Tari, V., & Turgut, C. (2023). Removal of pesticide residues from apple and tomato cuticle. Environmental Science and Pollution Research, 30(6), 15821–15829. https://doi.org/10.1007/s11356-022-23269-1