1,359
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Effect of rhizobium inoculation on yield and some quality properties of fresh cowpea

ORCID Icon & ORCID Icon
Article: 2275410 | Received 13 Jul 2023, Accepted 21 Oct 2023, Published online: 27 Oct 2023

References

  • Abbas, M., Haroun, S., Mowfy, A., & Agha, M. (2018). Co-inoculation effect of rhizobia and endophytic bacteria on Vicia faba growth and metabolism. Journal of Plant Production, 9(3), 269–26. https://doi.org/10.21608/jpp.2018.35470
  • Adinurani, P. G., Rahayu, S., Purbajanti, E. D., Siskawardani, D. D., Stankeviča, K., & Setyobudi, R. H. (2021). Enhanced of root nodules, uptake NPK, and yield of peanut plant (Arachis hypogaea L.) using rhizobium and mycorrhizae applications. Sarhad Journal of Agriculture, 37(1), 16–24. https://doi.org/10.17582/journal.sja/2021/37.s1.16.24
  • Agba, O. A., Mbah, B. N., Asiegbu, J. E., & Eze, S. C. (2013). Effects of Rhizobium leguminosarum inoculation on the growth and yield of Mucuna flagellipies. Global Journal of Agricultural Sciences, 12(1), 45–53. https://doi.org/10.4314/gjass.v12i1.7
  • Ahmed, F. E. (2013). Interactive effect of nitrogen fertilization and Rhizobium inoculation on nodulation and yield of soybean (glycine max L. Merrill). Global Journal of Biology, Agriculture and Health Sciences, 2(4), 169–173.
  • Akçin, A. (1980). Measurement of ozone damage by determination of chlorophyll concentration in leaves. Atatürk Üniversitesi Ziraat Fakültesi dergisi, 11(3&4), 173–180.
  • Akman, Y. T. (2017). Effects of Rhizobium and Arbuscular Mycorrhiza applications on seed yield and some agronomical characteristics of common bean (Phaseolus vulgaris L.). [ Doctoral Dissertation]. Ondokuz Mayis University Graduate School of Sciences.
  • Alam, F., Bhuiyan, M. A. H., Alam, S. S., Waghmode, T. R., Kim, P. J., & Lee, Y. B. (2015). Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (glycine max) genotypes in gray terrace soil. Bioscience, Biotechnology, and Biochemistry, 79(10), 1660–1668. https://doi.org/10.1080/09168451.2015.1044931
  • Allahdadi, M., & Raei, Y. (2017). Growth and chlorogenic acid content of artichoke (Cynara scolymus L.) affected by bio and chemical fertilizer. Journal of Biodiversity and Environmental Sciences, 11(5), 63–73.
  • Amine-Khodja, I. R., Boscari, A., Riah, N., Kechid, M., Maougal, R. T., Belbekri, N., & Djekoun, A. (2022). Impact of two strains of rhizobium leguminosarum on the adaptation to terminal water deficit of two cultivars Vicia faba. Plants, 11(4), 515. https://doi.org/10.3390/plants11040515
  • Anjum, M. S., Ahmed, Z. I., & Rauf, C. A. (2006). Effect of rhizobium inoculation and nitrogen fertilizer on yield and yield components of mungbean. International Journal of Agriculture and Biology, 8(2), 238–240.
  • Arumugam, R., Rajasekaron, S., & Nagarajan, S. M. (2010). Response of arbuscular mycorrhizal fungi and rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata L. Walp Var. Pusa 151. Journal of Applied Sciences and Environmental Management, 14(4), 113–115. https://doi.org/10.4314/jasem.v14i4.63282
  • Asare, A. T., Agbemafle, R., Adukpo, G. E., Diabor, E., & Adamtey, K. A. (2013). Assessment of functional properties and nutritional composition of some cowpea (Vigna unguiculata L.) genotypes in Ghana. ARPN Journal of Agricultural and Biological Science, 8(6), 465–469.
  • Ashinie, S. K., Tesfaye, B., Wakeyo, G. K., & Fenta, B. A. (2020). Genetic diversity for immature pod traits in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] landrace collections. African Journal of Biotechnology, 19(4), 171–182. https://doi.org/10.5897/AJB2020.17097
  • Athul, P. P., Patra, R. K., Sethi, D., Panda, N., Mukhi, S. K., Padhan, K. Sahoo, SK, Sahoo, TR, Mangaraj, S, Pradhan, SR, & Pattanayak, SK. (2022). Efficient native strains of rhizobia improved nodulation and productivity of French bean (Phaseolus vulgaris L.) under rainfed condition. Frontiers in Plant Science, 13, 1048696. https://doi.org/10.3389/fpls.2022.1048696
  • Ayalew, T., & Yoseph, T. (2022). Cowpea (Vigna unguiculata L. Walp.): A choice crop for sustainability during the climate change periods. Journal of Applied Biology and Biotechnology, 10(3), 154–162. https://doi.org/10.7324/JABB.2022.100320
  • Ayalew, T., Yoseph, T., Petra, H., & Cadisch, G. (2021). Yield response of field‐grown cowpea varieties to Bradyrhizobium inoculation. Agronomy Journal, 113(4), 3258–3268. https://doi.org/10.1002/agj2.20763
  • Ayuso-Calles, M., García-Estévez, I., Jiménez-Gómez, A., Flores-Félix, J. D., Escribano-Bailón, M. T., & Rivas, R. (2020). Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods, 9(9), 1166. https://doi.org/10.3390/foods9091166
  • Bejandi, T. K., Sharifii, R. S., Sedghi, M., & Namvar, A. (2012). Effects of plant density, rhizobium inoculation and microelements on nodulation, chlorophyll content and yield of chickpea (Cicer arietinum L.). Annals of Biological Research, 3(2), 951–958.
  • Biswas, S., Banerjee, A., Acharyya, P., & Chakraborty, N. (2020). Response of French bean (Phaseolus vulgaris L. cv. Arka Arjun) to Rhizobium inoculation under varied levels of nitrogen and molybdenum. International Journal of Current Microbiology and Applied Sciences, 9(3), 2759–2767. https://doi.org/10.20546/ijcmas.2020.903.316
  • Borges, W. L., dos Santos Ferreira, N., da Mota Rios, R., da Silva, M. A., Araújo, A. P., Straliotto, R., & Gouvêa Rumjanek, N. (2023). Strategies for improving cowpea grain yield in the eastern amazon: Biological nitrogen fixation, phosphorus nutrition, and molybdenum seed enrichment. Communications in Soil Science and Plant Analysis, 54(15), 2087–2101. https://doi.org/10.1080/00103624.2023.2211603
  • Carranca, C., Brunetto, G., & Tagliavini, M. (2018). Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants, 7(1), 4. https://doi.org/10.3390/plants7010004
  • Cemeroglu, B. (1992). Basic analysis methods in fruit and vegetable processing industry. Biltav publications.
  • Charitha Devi, M., & Reddy, M. N. (2002). Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regulation, 37(2), 151–156. https://doi.org/10.1023/A:1020569525965
  • Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A., & Kumar, G. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Frontiers in Plant Science, 13, 930340. https://doi.org/10.3389/fpls.2022.930340
  • Chavan, S. D., Mate, S. N., Deshmukh, D. V., & Harer, P. N. (2013). Physiological efficiency for growth and yield in cowpea (Vigna unguiculata (L.) Walp.). Journal of Agriculture Research and Technology, 38(1), 19–24.
  • Chenard, C. H., Kopsell, D. A., & Kopsell, D. E. (2005). Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. Journal of Plant Nutrition, 28(2), 285–297. https://doi.org/10.1081/PLN-200047616
  • Coseteng, M. Y., & Lee, C. Y. (1987). Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. Journal of Food Science, 52(4), 985–989. https://doi.org/10.1111/j.1365-2621.1987.tb14257.x
  • Couto, C., Silva, L. R., Valentão, P., Velázquez, E., Peix, A., & Andrade, P. B. (2011). Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chemistry, 127(4), 1487–1495. https://doi.org/10.1016/j.foodchem.2011.01.135
  • Das, K., Datta, S., & Sikhdar, S. (2018). Performance of bush type frenchbean varieties (Phaseolus vulgaris L.) with or without rhizobium inoculation. Indian Journal of Agricultural Research, 52(00), 284–289. https://doi.org/10.18805/IJARe.A-4981
  • da Silva Júnior, E. B., Favero, V. O., Xavier, G. R., Boddey, R. M., & Zilli, J. E. (2018). Rhizobium inoculation of cowpea in Brazilian cerrado increases yields and nitrogen fixation. Agronomy Journal, 110(2), 722–727. https://doi.org/10.2134/agronj2017.04.0231
  • Devi, C. B., Kushwaha, A., & Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). Journal of Food Science and Technology, 52(10), 6821–6827. https://doi.org/10.1007/s13197-015-1832-1
  • Dhillon, L. K., Lindsay, D., Yang, T., Zakeri, H., Tar’an, B., Knight, J. D., & Warkentin, T. D. (2022). Biological nitrogen fixation potential of pea lines derived from crosses with nodulation mutants. Field Crops Research, 289, 108731. https://doi.org/10.1016/j.fcr.2022.108731
  • Duan, C., Mei, Y., Wang, Q., Wang, Y., Li, Q., Hong, M., & Hu, S, Li, S, Fang, L. (2022). Rhizobium inoculation enhances the resistance of alfalfa and microbial characteristics in copper-contaminated soil. Frontiers in Microbiology, 12, 781831. https://doi.org/10.3389/fmicb.2021.781831
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146, 1–12. https://doi.org/10.1016/j.plaphy.2019.11.003
  • Farfour, S. A., Al-Saman, M. A., & Hamouda, R. A. (2015). Potential activity of some biofertilizer agents on antioxidant and phytochemical constituents of faba bean plant. Global Advanced Research Journal of Agricultural Science, 4(1), 26–32.
  • Fathi, A. (2022). Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A. Agrisost Vol. 28, January-December 2022: 1–8. https://doi.org/10.5281/zenodo.7143588
  • Flores-Félix, J. D., Velázquez, E., García-Fraile, P., González-Andrés, F., Silva, L. R., & Rivas, R. (2018). Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Research International, 111, 416–422. https://doi.org/10.1016/j.foodres.2018.05.059
  • Gedamu, S. A., Tsegaye, E. A., & Beyene, T. F. (2021). Effect of rhizobial inoculants on yield and yield components of faba bean (Vicia fabae L.) on vertisol of Wereillu District, South Wollo, Ethiopia. CABI Agriculture and Bioscience, 2(1), 1–10. https://doi.org/10.1186/s43170-021-00025-y
  • Habete, A., & Buraka, T. (2016). Effect of rhizobium inoculation and nitrogen fertilization on nodulation and yield response of common bean (Phaseolus vulgaries L.) at Boloso Sore, Southern Ethiopia. Journal of Biological, Agriculture and Healt, 6(13), 72–75.
  • Hannan, A., Huda, M. S., Sultana, M., Alam, M. R., & Islam, M. A. (2022). Effects of different levels of phosphorus and bradyrhizobium inocula on the productivity and protein content of mungbean (Vigna radiata l. wilczek). Open Access Journal of Science, 5(1), 32‒39. https://doi.org/10.15406/oajs.2022.05.00173
  • Honda, S., Takeda, K., & Kakehi, K. (1980). Studies of the structures of the carbohydrate components in plant oligosaccharide glycosides by the dithioacetol method. Carbohydrate Research, 73(1), 135–143. https://doi.org/10.1016/S0008-6215(00)85482-8
  • Iqbal, A., Shafi, M. I., Rafique, M., Nisa, W., Jabeen, A., Asif, S., Zaman, M., Ali, I., Gul, B., Tang, X., & Jiang, L. (2023). Biofertilizers to improve soil health and crop yields. Sustainable agriculture reviews (pp. 247–272). https://doi.org/10.1007/978-3-031-26983-7_11
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806. https://doi.org/10.1002/jsfa.9074
  • Jiménez-Gómez, A., García-Estévez, I., Escribano-Bailón, M. T., García-Fraile, P., & Rivas, R. (2021). Bacterial fertilizers based on Rhizobium laguerreae and Bacillus halotolerans enhance Cichorium endivia L. phenolic compound and mineral contents and plant development. Foods, 10(2), 424. https://doi.org/10.3390/foods10020424
  • Kaari, M., Manikkam, R., Annamalai, K. K., & Joseph, J. (2023). Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology, 134(2), 1–16. https://doi.org/10.1093/jambio/lxac047
  • Kandel, S., Khumaltar, L., Sharma, N. R., Chaudhary, N. S., Kritipur, N., & Sapkota, P. (2023). Bio-Fertilizer: Possibilities and scope in Nepal-A review. International Journal of Innovative Science & Research Technology, 8(1), 1–5.
  • Kaya, M. D., Çiftçi, C. Y., & Kaya, M. (2002). The effects of rhizobium inoculation and nitrogen doses on yield and yield components in pea (Pisum sativum L.). Tarım Bilimleri Dergisi, 8(4), 300–305. https://doi.org/10.1501/Tarimbil_0000000762
  • Kebede, E. (2021). Competency of rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Frontiers in Sustainable Food Systems, 5, 728014. https://doi.org/10.3389/fsufs.2021.728014
  • Kellman, A. (2008). Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.) [ Doctoral dissertation]. Lincoln University.
  • Khan, A., Panthari, D., Sharma, R. S., Punetha, A., Singh, A. V., & Upadhayay, V. K. (2023). Biofertilizers: A microbial-assisted strategy to improve plant growth and soil health. In Advanced microbial techniques in agriculture, environment, and health management (pp. 97–118). Academic Press. https://doi.org/10.1016/B978-0-323-91643-1.00007-7
  • Kopsell, D. A., Kopsell, D. E., & Curran‐Celentano, J. (2007). Carotenoid pigments in kale are influenced by nitrogen concentration and form. Journal of the Science of Food and Agriculture, 87(5), 900–907. https://doi.org/10.1002/jsfa.2807
  • Krapp, A. (2015). Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Current Opinion in Plant Biology, 25, 115–122. https://doi.org/10.1016/j.pbi.2015.05.010
  • Kumar, K., & Kumar, M. (2020). Biofertilizers and their role in agriculture. Just Agriculture, 1(3), 1–6.
  • Kumar, B. N., Padmaja, G., & Chandrasekhar Rao, P. (2017). Effect of different levels of nitrogen and potassium on ascorbic acid, crude protein and crude fibre content of okra (Abelmoschus esculentus L.). International Journal of Pure & Applied Bioscience, 5(4), 882–886. https://doi.org/10.18782/2320-7051.5591
  • Kumar, K., Yadav, J., & Rao, N. (2019). History, concept and components of biosecurity. In Naresh, N. K. (Ed.), Advances in agriculture sciences (pp. 187–200). AkiNik.
  • Kyei-Boahen, S., Savala, C. E., Chikoye, D., & Abaidoo, R. (2017). Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Frontiers in Plant Science, 8, 646. https://doi.org/10.3389/fpls.2017.00646
  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2
  • Liu, Y. S., Geng, J. C., Sha, X. Y., Zhao, Y. X., Hu, T. M., & Yang, P. Z. (2019). Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 10, 538. https://doi.org/10.3389/fpls.2019.00538
  • Liu, D., Liu, W., Zhu, D., Geng, M., Zhou, W., & Yang, T. (2010). Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant chrysanthemum morifolium. Journal of Plant Nutrition and Soil Science, 173(2), 268–274. https://doi.org/10.1002/jpln.200900229
  • Mahapatra, D. M., Satapathy, K. C., & Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Science of the Total Environment, 803, 149990. https://doi.org/10.1016/j.scitotenv.2021.149990
  • Makgato, M. J., Araya, H. T., du Plooy, C. P., Mokgehle, S. N., & Mudau, F. N. (2020). Effects of Rhizobium inoculation on N2 fixation, phytochemical profiles and rhizosphere soil microbes of cancer bush lessertia frutescens (L.). Agronomy, 10(11), 1675. https://doi.org/10.3390/agronomy10111675
  • Malik, D. K., & Sindhu, S. S. (2011). Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiology & Molecular Biology of Plants, 17(1), 25–32. https://doi.org/10.1007/s12298-010-0041-7
  • Ma, Y., Liu, Y., Yang, P., Zhang, T., & Wu, Y. (2020). The synthesis mechanism of chlorogenic acid in leaves of eucommia ulmoides Oliver. Applied Ecology and Environmental Research, 18(2), 2719–2725. https://doi.org/10.15666/aeer/1802_27192725
  • Maslennikova, D., Nasyrova, K., Chubukova, O., Akimova, E., Baymiev, A., Blagova, D., & Lastochkina, O. (2022). Effects of rhizobium leguminosarum Thy2 on the growth and tolerance to cadmium stress of wheat plants. Life, 12(10), 1675. https://doi.org/10.3390/life12101675
  • Melo, A. S. D., Melo, Y. L., Lacerda, C. F. D., Viégas, P. R., Ferraz, R. L. D. S., & Gheyi, H. R. (2022). Water restriction in cowpea plants [Vigna unguiculata (L.) Walp.]: Metabolic changes and tolerance induction. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(3), 190–197. https://doi.org/10.1590/1807-1929/agriambi.v26n3p190-197
  • Mfilinge, A., Mtei, K., & Ndakidemi, P. (2014). Effect of rhizobium inoculation and supplementation with phosphorus and potassium on growth and total leaf chlorophyll (chl) content of bush bean Phaseolus vulgaris, L. Agricultural Sciences, 5(14), 1413–1426. https://doi.org/10.4236/as.2014.514152
  • Miao, M., & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. Advances in Pharmacology, 87, 71–88. https://doi.org/10.1080/2314808X.2021.2019418
  • Mishra, R. P., Singh, R. K., Jaiswal, H. K., Kumar, V., & Maurya, S. (2006). Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Current Microbiology, 52(5), 383–389. https://doi.org/10.1007/s00284-005-0296-3
  • Molosiwa, O. O., & Makwala, B. C. (2020). Field evaluation of introduced and local cowpea genotypes performance in Botswana. African Journal of Agricultural Research, 16(9), 1317–1324. https://doi.org/10.5897/AJAR2020.15031
  • Mowafy, A. M., Agha, M. S., Haroun, S. A., Abbas, M. A., & Elbalkini, M. (2022). Insights in nodule-inhabiting plant growth promoting bacteria and their ability to stimulate Vicia faba growth. Egyptian Journal of Basic and Applied Sciences, 9(1), 51–64. https://doi.org/10.1080/2314808X.2021.2019418
  • Müftüoğlu, N. M., & Demirer, T. (1998). Nitrogen balance sheet in soil. Atatürk University Journal of Agricultural Faculty, 29(1), 175–185.
  • Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Journal of the Japanese Society for Food Science and Technology, 39(10), 925–928. https://doi.org/10.3136/nskkk1962.39.925
  • Namazi, Y., Rezaei-Chiyaneh, E., Siavash Moghaddam, S., & Leonardo Battaglia, M. (2022). The effects of microbial inoculation and intercropping on yield and active ingredients of savory (Satureja hortensis L.) intercropped with common bean (Phaseolus vulgaris L.). International Journal of Environmental Science and Technology, 19(9), 8273–8288. https://doi.org/10.1007/s13762-022-04024-y
  • Naseri Rad, H., Sayadi, V., & Naseri Rad, A. (2014). Effect of rhizobium bacteria (Rhizobium leguminosarum) and nano-iron application on yield and yield components of different pinto beans genotypes. Agricultural Communications, 2(2), 22–27.
  • Noufal, A. H., Ali, M. A. M., & Abd El-Aal, M. M. M. (2018). Effect of rhizobium inoculation and foliar spray with salicylic and Ascorbic Acids on growth, yield and seed quality of pea plant (Pisum sativum L.) grown on a Salt affected soil, New Valley-Egypt. In 4th International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Hurghada, 4-7 April 2018, 573–590.
  • Nwofia, G. E. (2012). Yield and yield components in vegetable cowpea on an ultisol. African Journal of Agricultural Research, 7(28), 4097–4103. https://doi.org/10.5897/AJAR12.402
  • Nyaga, J. W., & Njeru, E. M. (2020). Potential of native rhizobia to improve cowpea growth and production in semiarid regions of Kenya. Frontiers in Agronomy, 2, 606293. https://doi.org/10.3389/fagro.2020.606293
  • Nyoki, D., & Ndakidemi, P. A. (2014). Effects of phosphorus and Bradyrhizobium japonicum on growth and chlorophyll content of cowpea (Vigna unguiculata (L) Walp). American Journal of Experimental Agriculture, 4(10), 1120. https://doi.org/10.9734/AJEA/2014/6736
  • Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., & Martínez-Ruiz, M. (2023). Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093
  • Otieno, P. E., Muthomi, J. W., Chemining’wa, G. N., & Nderitu, J. H. (2009). Effect of rhizobia inoculation, farm yard manure and nitrogen fertilizer on nodulation and yield of food grain legumes. Journal of Biological Sciences, 9(4), 326–332. https://doi.org/10.3923/jbs.2009.326.332
  • Özbağ, T. (2013). The symbiotic performance and plant nutrient uptake of some nationally registered chickpea (Cicer arietinum L.) cultivars [ Master’s Thesis]. Atatürk University, Graduate School of Natural and Applied Sciences.
  • Özsoy Altunkaynak, A., & Ceyhan, E. (2018). The effects of seed yield and yield components of different nitrogen doses and inoculation of rhizobium on bean (Phaseolus vulgaris L.). Selcuk Journal of Agriculture and Food Sciences, 32(2), 91–98. https://doi.org/10.15316/SJAFS.2018.70
  • Peksen, A. (2004). Fresh pod yield and some pod characteristics of cowpea (Vigna unguiculata L. Walp.) genotypes from Turkey. Asian Journal of Plant Sciences, 3(3), 269–273. https://doi.org/10.3923/ajps.2004
  • Qureshi, M. A., Shahzad, H., Saeed, M. S., Ullah, S., Ali, M. A., Mujeeb, F., & Anjum, M. A. (2019). Relative potential of rhizobium species to enhance the growth and yield attributes of cotton (Gossypium hirsutum L.). Eurasian Journal of Soil Science (EJSS), 8(2), 159–166. https://doi.org/10.18393/ejss.544747
  • Razafintsalama, H., Trap, J., Rabary, B., Razakatiana, A. T. E., Ramanankierana, H., Rabeharisoa, L., & Becquer, T. (2022). Effect of rhizobium inoculation on growth of common bean in low-fertility tropical soil amended with phosphorus and lime. Sustainability, 14(9), 4907. https://doi.org/10.3390/su14094907
  • Rebika, T., & Nongmaithem, N. (2019). Effect of rhizobium ınoculation on yield and nodule formation of cowpea. International Journal of Current Microbiology and Applied Sciences, 8(11), 134–139. https://doi.org/10.20546/ijcmas.2019.811.016
  • Shamsullah, J. A., Hamid, B. A., & Hassan, W. F. (2023, July). Effect of nitrogen, phosphorus and fermented poultry waste on pigments balance and lettuce plant growth. IOP Conference Series: Earth and Environmental Science, 1213(1), 012007. https://doi.org/10.1088/1755-1315/1213/1/012007
  • Sheen, S. J. (1973). Correlation between chlorophyll and chlorogenic acid content in tobacco leaves. Plant Physiology, 52(5), 422–426. https://doi.org/10.1104/pp.52.5.422
  • Shen, D., Zhang, G., Xie, R., Ming, B., Hou, P., Xue, J., & Wang, K. (2020). Improvement in photosynthetic rate and grain yield in super-high-yield maize (Zea mays L.) by optimizing irrigation interval under mulch drip irrigation. Agronomy, 10(11), 1778. https://doi.org/10.3390/agronomy10111778
  • Shome, S., Barman, A., & Solaiman, Z. M. (2022). Rhizobium and phosphate solubilizing bacteria ınfluence the soil nutrient availability, growth, yield, and quality of soybean. Agriculture, 12(8), 1136. https://doi.org/10.3390/agriculture12081136
  • Singh, N. (2022). Application and impact of biofertilizers in sustainable agriculture. In Singh, M., Singh G. P., & Tyagi, S. (Eds.), Microbial products (pp. 205–234). CRC Press.
  • Singh, S., Choudhary, M. R., Garhwal, O. P., Jakhar, M. L., & Yadav, B. L. (2012). Effect of biofertilizers and inorganic sources of nitrogen and phosphorus on quality production of kasuri methi (Trigonella corniculata). International Journal of Seed Spices, 2(2), 38–40.
  • Singh, S. P., Singh, S., Dubey, A. N., & Rajput, R. K. (2020). Three Major Dimensions of Life: Environment, Agriculture and Health, Pant, H., Siddiqui, A. R., Mishra, N., Singh, M. K., Verma, J., Kushwaha, S., Singh, S. P., & Pandey, P. R (Eds.), (pp. 12–18). Society of Biological Sciences and Rural Development Prayagraj, U.P., India.
  • Sujkowska-Rybkowska, M., Rusaczonek, A., Kasowska, D., Gediga, K., Banasiewicz, J., Stępkowski, T., & Bernacki, M. J. (2022). Potential of rhizobia nodulating anthyllis vulneraria L. from ultramafic soil as plant growth promoting bacteria alleviating nickel stress in Arabidopsis thaliana L. International Journal of Molecular Sciences, 23(19), 11538. https://doi.org/10.3390/ijms231911538
  • Türkmen, O. S., Özçelik, F., Nizam, Ö., & Baytekin, H. (2016). Effect of nitrogen fertilization and rhizobium on hydroponic bean culture. Tarla Bitkileri Merkez Araştırma Enstitusu Dergisi, 25(özel sayı–1), 201–205. https://doi.org/10.21566/tarbitderg.280384
  • Vargas, L. K., Volpiano, C. G., Lisboa, B. B., Giongo, A., Beneduzi, A., & Passaglia, L. M. P. (2017). Potential of rhizobia as plant growth-promoting rhizobacteria. Microbes for Legume Improvement, 153–174. https://doi.org/10.1007/978-3-319-59174-2_7
  • Verma, R., Annapragada, H., Katiyar, N., Shrutika, N., Das, K., & Murugesan, S. (2020). Rhizobium. Beneficial Microbes in Agro-Ecology, 37–54. https://doi.org/10.1016/B978-0-12-823414-3.00004-6
  • Wang, T. L., Wood, E. A., & Brewin, N. J. (1982). Growth regulators, rhizobium and nodulation in peas: Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta, 155(4), 345–349. https://doi.org/10.1007/BF00429463
  • Yan, Y., Hou, P., Duan, F., Niu, L., Dai, T., Wang, K., & Zhou, W. (2021). Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynthesis Research, 150(1–3), 295–311. https://doi.org/10.1007/s11120-021-00847-x
  • Yousaf, S., Zohaib, A., Anjum, S. A., Tabassum, T., Abbas, T., Irshad, S., & Farooq, N. (2019). Effect of seed inoculation with plant growth promoting rhizobacteria on yield and quality of soybean. Pakistan Journal of Agricultural Research, 32(1), 177–184. https://doi.org/10.17582/journal.pjar/2019/32.1.177.184
  • Zamani, F., Amirnia, R., Rezaei-Chiyaneh, E., Gheshlaghi, M., von Cossel, M., & Siddique, K. H. (2022). Optimizing essential oil, fatty acid profiles, and phenolic compounds of dragon’s head (Lallemantia iberica) intercropped with chickpea (Cicer arietinum L.) with biofertilizer inoculation under rainfed conditions in a semi-arid region. Archives of Agronomy and Soil Science, 69(9), 1–18. https://doi.org/10.1080/03650340.2022.2105320
  • Zhang, L., Sun, S., Liang, Y., Li, B., Ma, S., Wang, Z., Ma, B., & Li, M. (2021). Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Frontiers in Plant Science, 12, 626149. https://doi.org/10.3389/fpls.2021.626149