545
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Bacillus velezensis AR1 mediated plant nourishing through solubilization of hardly soluble phosphorus nutrient sources

ORCID Icon
Article: 2276561 | Received 18 Jun 2023, Accepted 24 Oct 2023, Published online: 18 Nov 2023

References

  • Afzal, A., Bahader, S., Ul Hassan, T., Naz, I., & Din, A. U. (2023). Rock phosphate solubilization by plant growth-promoting Bacillus velezensis and its impact on wheat growth and yield. Geomicrobiology Journal, 40(2), 131–10. https://doi.org/10.1080/01490451.2022.2128113
  • Atlas, R. M., & Bartha, R. (1997). Microbial ecology. Benjamin/Cummings Science Publishing.
  • Banik, S., & Dey, B. K. (1983). Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt für Mikrobiologie, 138(1), 17–23. https://doi.org/10.1016/S0232-4393(83)80060-2
  • Davies, F. K., D’Adamo, S., & Posewitz, M. C. (2016). HPLC analysis of secreted organic acids. Bio-protocol, 6(8), e1786. https://doi.org/10.21769/BioProtoc.1786
  • De Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358–364. https://doi.org/10.1007/s003740050258
  • dos Santos, C. R. L., Cristina M. C. J. I., Antônio S. M., Luiz S. E., & Carlos C. A. (2015). Isolation and selection of P-solubilizing and IAA-synthesizing microorganisms from the rhizosphere of Guanandi (Calophyllum brasiliensis). African Journal of Agricultural Research, 10, 4455–4460. https://doi.org/10.5897/AJAR2015.9635
  • Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., & Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02491
  • Flatian, A. N., Anas, I., & Sutandi, A. (2021). The ability of some microbes to solubilize the hardly soluble phosphorous and potassium from various sources in vitro. In Paper presented to the IOP Conference Series: Earth and Environmental Science, 1st International Conference on Sustainable Tropical Land Management, 2000, September 16–18, Bogor, Indonesia (Vol. 648).
  • Goldstein, A. H. (1994). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: Cellular and molecular biology (pp. 197–203). ASM Press.
  • Goldstein, A. H., & Krishnaraj, P. U. (2007). Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: What separates a phenotype from a trait? In Paper presented to the First International Meeting on Microbial Phosphate Solubilization, Dordrecht, Springer. https://doi.org/10.1007/978-1-4020-5765-6_31
  • Goldstein, A. H., Rogers, R. D., & Mead, G. (1993). Mining by microbe. Bio/technology, 11(11), 1250. https://doi.org/10.1038/nbt1193-1250
  • Holford, I. C. R. (1997). Soil phosphorus: Its measurement, and its uptake by plants. Soil Research, 35(2), 227–40. https://doi.org/10.1071/S96047
  • Hwangbo, K., Um, Y., Ki, Y. K., Madhaiyan, M., Sa, T. M., & Lee, Y. (2016). Complete genome sequence of Bacillus velezensis CBMB205, a phosphate-solubilizing bacterium isolated from the rhizoplane of rice in the Republic of Korea. Genome Announcements, 4(4). https://doi.org/10.1128/genomeA.00654-16
  • Kapri, A., & Tewari, L. (2010). Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology, 41(3), 787–795. https://doi.org/10.1590/S1517-83822010005000001
  • Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28(1), 61–69. https://doi.org/10.1016/j.biotechadv.2009.09.002
  • Kavanagh K. (2011)Biology and Applications (2nded., Vol. 125). John Wiley & Sons.
  • Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354–358. https://doi.org/10.1021/ac60038a038
  • Kitson, R. E., & Mellon, M. G. (1944). Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Industrial & Engineering Chemistry Analytical Edition, 16(6), 379–383. https://doi.org/10.1021/i560130a017
  • Lal, L. (2002). Phosphatic biofertilizers: Agrotech Pub. Academy.
  • Mardad, I., Serrano Delgado, A., & Soukri, A. (2013). Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626–635. https://doi.org/10.5897/AJMR12.1431
  • McGill, W. B., & Cole, C. V. (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26(4), 267–286. https://doi.org/10.1016/0016-7061(81)90024-0
  • Meng, Q., Jiang, H., & Hao, J. J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 98, 18–26. https://doi.org/10.1016/j.biocontrol.2016.03.010
  • Mosela, M., Andrade, G., Massucato, L. R., de Araújo Almeida, S. R., Nogueira, A. F., de Lima Filho, R. B., Zeffa, D. M., Mian, S., Higashi, A. Y., Shimizu, G. D., Teixeira, G. M., Branco, K. S., Faria, M. V., Giacomin, R. M., Scapim, C. A., & Gonçalves, L. S. A. (2022). Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19515-8
  • Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Carneiro, N. P., Guimaraes, C. T., Schaffert, R. E., & NMH, S. (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41(9), 1782–1787. https://doi.org/10.1016/j.soilbio.2008.01.012
  • Omar, S. A. (1997). The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14(2), 211–218. https://doi.org/10.1023/A:1008830129262
  • Perez, E., Sulbaran, M., Ball, M. M., & Andres Yarzabal, L. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11), 2905–2914. https://doi.org/10.1016/j.soilbio.2007.06.017
  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologiya, 17(7), 362–370. https://doi.org/10.4236/as.2019.103028
  • Ponmurugan, P., & Gopi, C. (2006). In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology, 5(4), 348–350.
  • Premono, M. E., Moawad, A. M., & Vlek, P. L. G. (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Journal of Environmental Protection, 9(3), 2152–2219.
  • Rashid, M., Khalil, S., Ayub, N., Alam, S., & Latif, F. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences: PJBS, 7(2), 187–196. https://doi.org/10.3923/pjbs.2004.187.196
  • Regassa, A. B., Taegyu, C., & Seong Lee, Y. (2018). Supplementing biocontrol efficacy of Bacillus velezensis against Glomerella cingulata. Physiological and Molecular Plant Pathology, 102, 173–179. https://doi.org/10.1016/j.pmpp.2018.03.002
  • Reis, M. R., Silva, A. A., Guimarães, A. A., Costa, M. D., Massenssini, A. M., & Ferreira, E. A. (2008). Ação de herbicidas sobre microrganismos solubilizadores de fosfato inorgânico em solo rizosférico de cana-de-açúcar. Planta Daninha, 26(2), 333–341. https://doi.org/10.1590/S0100-83582008000200009
  • Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2
  • Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897. https://doi.org/10.3390/molecules23112897
  • Sharma, S., Kaur, M., & Prashad, D. (2014). Isolation of fluorescent Pseudomonas strain from temperate zone of Himachal Pradesh and their evaluation as Plant Growth Promoting Rhizobacteria (PGPR). The Bioscan, 9(1), 323–328.
  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1–14. https://doi.org/10.1186/2193-1801-2-587
  • Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156(3), 997–1005. https://doi.org/10.1104/pp.111.175232
  • Stevenson, F. J., & Cole, M. A. (1986). Cycles of the soil John Wiley and Sons (2nd ed.). John Wiley & Sons, Inc.
  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301–307. https://doi.org/10.1016/0038-0717(69)90012-1
  • Vance, C. P., Uhde‐Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5–6), 460–468. https://doi.org/10.1007/s003740050024
  • Whitelaw, M. A., Harden, T. J., & Helyar, K. R. (1999). Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31(5), 655–665. https://doi.org/10.1016/S0038-0717(98)00130-8
  • Xie, L., Liu, L., Luo, Y., Rao, X., Di, Y., Liu, H., Qian, Z., Shen, Q., He, L., & Li, F. (2023). Complete genome sequence of biocontrol strain Bacillus velezensis YC89 and its biocontrol potential against sugarcane red rot. Frontiers in Microbiology, 14, 1180474. https://doi.org/10.3389/fmicb.2023.1180474