1,679
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Impacts of improved agricultural technologies on food security and child nutrition in rural Ethiopia

&
Article: 2276565 | Received 30 Aug 2022, Accepted 24 Oct 2023, Published online: 02 Nov 2023

References

  • Addis, Y., & Sani, S. (2021). Impact of adoption of improved agricultural production technologies on cereal crops productivity and farmers’ welfare in Central Ethiopia. Indian Journal of Science and Technology, 14(44), 3280–27. https://doi.org/10.17485/IJST/v14i44.1306
  • Amare, M., Asfaw, S., & Shiferaw, B. (2012). Welfare impacts of maize–pigeon pea intensification in Tanzania. Agricultural Economics, 43(1), 27–43. https://doi.org/10.1111/j.1574-0862.2011.00563.x
  • Arellano, M. (2003). Panel data econometrics. Oxford university press.
  • Arslan, A., Belotti, F., & Lipper, L. (2017). Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania. Food Policy, 69, 68–81. https://doi.org/10.1016/j.foodpol.2017.03.005
  • Asfaw, S., Kassie, M., Simtowe, F., & Leslie, L. (2012). Poverty reduction effects of agricultural technology: A micro-evidence from Tanzania. Journal of Development Studies, 48(9), 1288–1305. https://doi.org/10.1080/00220388.2012.671475
  • Asfaw, S., Shiferaw, B., Simtowe, F., & Lipper, L. (2012). Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia. Food Policy, 37(3), 283–295. https://doi.org/10.1016/j.foodpol.2012.02.013
  • Aweke, C. S., Hassen, J. Y., Wordofa, M. G., Moges, D. K., Endris, G. S., & Rorisa, D. T. (2021). Impact assessment of agricultural technologies on household food consumption and dietary diversity in eastern Ethiopia. Journal of Agriculture and Food Research, 4, 100141. https://doi.org/10.1016/j.jafr.2021.100141
  • Ayenew, W., Lakew, T., & Kristos, E. H. (2020). Agricultural technology adoption and its impact on smallholder farmers welfare in Ethiopia. African Journal of Agricultural Research, 15(3), 431–445. https://doi.org/10.5897/AJAR2019.14302
  • Becker, S. O. (2009). Methods to estimate causal effects theory and applications. U Stirling, Ifo, CESifo and IZA last update: 21 August 2009. Stirling Management School.
  • Becker, S. O., & Caliendo, M. (2007). Sensitivity analysis for average treatment effects. The Stata Journal, 7(1), 71–83. https://doi.org/10.1177/1536867X0700700104
  • Bezu, S., Kassie, G. T., Shiferaw, B., & Ricker-Gilbert, J. (2014). Impact of improved maize adoption on welfare of farm households in Malawi: A panel data analysis. World Development, 59, 120–131. https://doi.org/10.1016/j.worlddev.2014.01.023
  • Biru, W. D., Zeller, M., & Loos, T. K. (2020). The impact of agricultural technologies on poverty and vulnerability of smallholders in Ethiopia: A panel data analysis. Social Indicators Research, 147(2), 517–544. https://doi.org/10.1007/s11205-019-02166-0
  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and applications. Cambridge University Press.
  • DiPrete, T. A., & Gangl, M. (2004). 7. Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments. Sociological Methodology, 34(1), 271–310. https://doi.org/10.1111/j.0081-1750.2004.00154.x
  • Duvendack, M., & Palmer-Jones, R. (2012). High noon for microfinance impact evaluations: Re-investigating the evidence from Bangladesh. The Journal of Development Studies, 48(12), 1864–1880. https://doi.org/10.1080/00220388.2011.646989
  • FAO. (2015a). Climate change and global food systems: Global assessments and implications for food security and trade. FAO.
  • FAO. (2015b). The State of Food Security in the World. http://www.fao.org/3/a-i4646e.pdf.
  • FAO. (2017) . Nutrition-sensitive agriculture and food systems in practice: Options for intervention. Rome.
  • Farsund, A. A., Daugbjerg, C., & Langhelle, O. (2015). Food security and trade: Reconciling discourses in the food and Agriculture Organization and the World trade Organization. Food Security, 7(2), 383–391. https://doi.org/10.1007/s12571-015-0428-y
  • Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255–298. https://doi.org/10.1086/451461
  • Fernandez, A., Noriega, E., & Thompson, A. (2013). Inactivation of Salmonella enterica serovar typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24–29. https://doi.org/10.1016/j.fm.2012.08.007
  • Gillespie, S., & van den Bold, M. (2017). Agriculture, food systems, and nutrition: Meeting the challenge. Global Challenges, 1(3). https://doi.org/10.1002/gch2.201600002
  • Greene, W. H. (2000). Econometric analysis (4th ed.). NJ: Prentice Hall.
  • Greene, W. H. (2012). Econometric analysis (7th ed.). Stern School of Business.
  • Habtewold, T. M. (2018). Adoption and impacts of improved agricultural technologies on rural poverty. In A. Heshmati & H. Yoon (Eds.), Economic growth and development in Ethiopia. Perspectives on development in the Middle East and North Africa (MENA) region (pp. 13–35). Springer.
  • Habtewold, T. M. (2020). Impacts of Improved Agricultural Technologies Adoption on Multidimensional Welfare Indicators in Rural Ethiopia [ Doctoral dissertation]. Addis Ababa University.
  • Habtewold, T. M. (2021). Impact of climate-smart agricultural technology on multidimensional poverty in rural Ethiopia. Journal of Integrative Agriculture, 20(4), 1021–1041. https://doi.org/10.1016/S2095-3119(21)63637-7
  • Hagos, F., Jayasinghe, G., Awulachew, S. B., Loulseged, M., & Yilma, A. D. (2012). Agricultural water management and poverty in Ethiopia. Agricultural Economics, 43(s1), 99–111. https://doi.org/10.1111/j.1574-0862.2012.00623.x
  • Hailu, M., Tolossa, D., Girma, A., & Kassa, B. (2021). The impact of improved agricultural technologies on household food security of smallholders in Central Ethiopia: An endogenous switching estimation. World Food Policy, 7(2), 111–127. https://doi.org/10.1002/wfp2.12029
  • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement, 5, 475–492.
  • Heckman, J. (1978). Dummy endogenous variables in a simultaneous equation system. Econometrica, 46(4), 931–959. https://doi.org/10.2307/1909757
  • Heckman, J., Ichimura, H., Smith, J. A., & Todd, P. E. (1998). Characterizing selection bias using experimental data. Econometrica, 66(5), 1017–1098. https://doi.org/10.2307/2999630
  • Heckman, J., Ichimura, H., & Todd, P. E. (1997). Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. The Review of Economic Studies, 64(4), 605–654. https://doi.org/10.2307/2971733
  • Hillier, D., Pindado, J., De Queiroz, V., & De La Torre, C. (2011). The impact of country-level corporate governance on research and development. Journal of International Business Studies, 42(1), 76–98. https://doi.org/10.1057/jibs.2010.46
  • Hundie, B., & Admassie, A. (2016). Potential impacts of yield-Increasing Crop technologies on productivity and poverty in two districts of Ethiopia. In F. Gatzweiler & J. von Braun (Eds.), Technological and institutional innovations for marginalized smallholders in agricultural development (pp. 397–421). Springer International Publishing.
  • Issahaku, G., & Abdulai, A. (2020). Can farm households improve food and nutrition security through adoption of climate‐smart practices? Empirical evidence from northern Ghana. Applied Economic Perspectives and Policy, 42(3), 559–579. https://doi.org/10.1093/aepp/ppz002
  • Jaleta, M., Kassie, M., Marenya, P., Yirga, C., & Erenstein, O. (2018). Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia. Food Security, 10(1), 81–93. https://doi.org/10.1007/s12571-017-0759-y
  • Jara-Rojas, R., Bravo-Ureta, B. E., & Díaz, J. (2012). Adoption of water conservation practices: A socioeconomic analysis of small-scale farmers in Central Chile. Agricultural Systems, 110, 54–62. https://doi.org/10.1016/j.agsy.2012.03.008
  • Kabunga, N. S., Ghosh, S., Webb, P., & Loor, J. J. (2017). Does ownership of improved dairy cow breeds improve child nutrition? A pathway analysis for Uganda. PloS One, 12(11), e0187816. https://doi.org/10.1371/journal.pone.0187816
  • Kangmennaang, J., Kerr, R. B., Lupafya, E., Dakishoni, L., Katundu, M., & Luginaah, I. (2017). Impact of a participatory agroecological development project on household wealth and food security in Malawi. Food Security, 9(3), 561–576. https://doi.org/10.1007/s12571-017-0669-z
  • Kassie, M., Marenya, P., Tessema, Y., Jaleta, M., Zeng, D., Erenstein, O., & Rahut, D. (2018). Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia: Evidence from panel data. Journal of Agricultural Economics, 69(1), 76–95. https://doi.org/10.1111/1477-9552.12221
  • Kassie, M., Teklewold, H., Marenya, P., Jaleta, M., & Erenstein, O. (2015). Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. Journal of Agricultural Economics, 66(3), 640–659. https://doi.org/10.1111/1477-9552.12099
  • Khonje, M., Manda, J., Alene, A. D., & Kassie, M. (2015). Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Development, 66, 695–706. https://doi.org/10.1016/j.worlddev.2014.09.008
  • Khonje, M. G., Manda, J., Mkandawire, P., Tufa, A. H., & Alene, A. D. (2018). Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agricultural Economics, 49(5), 599–609. https://doi.org/10.1111/agec.12445
  • Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge University Press.
  • Magrini, E., & Vigani, M. (2016). Technology adoption and the multiple dimensions of food security: The case of maize in Tanzania. Food Security, 8(4), 707–726. https://doi.org/10.1007/s12571-016-0593-7
  • Manda, J., Alene, A. D., Gardebroek, C., Kassie, M., & Tembo, G. (2016). Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. Journal of Agricultural Economics, 67(1), 130–153. https://doi.org/10.1111/1477-9552.12127
  • Manda, J., Gardebroek, C., Kuntashula, E., & Alene, A. D. (2018). Impact of improved maize varieties on food security in Eastern Zambia: A doubly robust analysis. Review of Development Economics, 22(4), 1709–1728. https://doi.org/10.1111/rode.12516
  • Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.
  • Mulugeta, T., & Hundie, B. (2012). Impacts of adoption of improved wheat technologies on households’ food consumption in Southeastern Ethiopia. Selected Poster prepared for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguaçu, Brazil, August 18-24, 2012.
  • Muzari, W., Gatsi, W., & Muvhunzi, S. (2012). The impacts of technology adoption on smallholder agricultural productivity in sub-Saharan Africa. Journal of Sustainable Development, 5(8), 69–77. https://doi.org/10.5539/jsd.v5n8p69
  • Niveditha, A., Pandiselvam, R., Prasath, V. A., Singh, S. K., Gul, K., & Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-a review. Food Control, 130, 108338. https://doi.org/10.1016/j.foodcont.2021.108338
  • Odame, H., Alemu, D., Kimenye, L., Kabutha, C., & Oduori, L. H. (2013). Why the low adoption of agricultural technologies in Eastern and Central Africa? Association for Strengthening Agricultural Research in Eastern and Central Africa. https://www.asareca.org/sites/default/files/publications/LOW%20ADOPTION%20(pdf%20for%20web).pdf.
  • Ogada, M. J., Mwabu, G., & Muchai, D. (2014). Farm technology adoption in Kenya: a simultaneous estimation of inorganic fertilizer and improved maize variety adoption decisions. Agricultural and Food Economics, 2(1), 1–18. https://doi.org/10.1186/s40100-014-0012-3
  • Olagunju, K. O., Ogunniyi, A. I., Awotide, B. A., Adenuga, A. H., & Ashagidigbi, W. M. (2020). Evaluating the distributional impacts of drought-tolerant maize varieties on productivity and welfare outcomes: An instrumental variable quantile treatment effects approach. Climate and Development, 12(10), 865–875. https://doi.org/10.1080/17565529.2019.1701401
  • Pan, Y., Smith, S. C., & Sulaiman, M. (2018). Agricultural extension and technology adoption for food security: Evidence from Uganda. American Journal of Agricultural Economics, 100(4), 1012–1031. https://doi.org/10.1093/ajae/aay012
  • Prabha, V., Barma, R. D., Singh, R., & Madan, A. (2015). Ozone technology in food processing: A review. Trends in Biosciences, 8(16), 4031–4047.
  • Rosenbaum, P. R. (2002). Observational studies (2nd ed.). Springer.
  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrica, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41
  • Schipanski, M. E., MacDonald, G. K., Rosenzweig, S., Chappell, M. J., Bennett, E. M., Kerr, R. B., Blesh, J., Crews, T., Drinkwater, L., Lundgren, J. G., & Schnarr, C. (2016). Realizing resilient food systems. BioScience, 66(7), 600–610. https://doi.org/10.1093/biosci/biw052
  • Shiferaw, B., Kassie, M., Jaleta, M., & Yirga, C. (2014). Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy, 44, 272–284. https://doi.org/10.1016/j.foodpol.2013.09.012
  • Sinyolo, S. (2020). Technology adoption and household food security among rural households in South Africa: The role of improved maize varieties. Technology in Society, 60, 101214. https://doi.org/10.1016/j.techsoc.2019.101214
  • Sissoko, P., Synnevag, G., & Aune, J. B. (2022). Effects of low-cost agricultural technology package on income, cereal surplus production, household expenditure, and food security in the drylands of Mali. AIMS Agriculture and Food, 7(1), 22–36. https://doi.org/10.3934/agrfood.2022002
  • Smale, M., & Mason, N. (2014). Hybrid seed and the economic well-being of smallholder maize farmers in Zambia. The Journal of Development Studies, 50(5), 680–695. https://doi.org/10.1080/00220388.2014.887690
  • Swanson, B. E., & Rajalahti, R. (2010). Strengthening agricultural extension and advisory systems: Procedures for assessing, transforming, and evaluating extension systems, the World Bank Agriculture and rural Development discussion paper 45,
  • Teklewold, H., Gebrehiwot, T., & Bezabih, M. (2019). Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia. World Development, 122, 38–53. https://doi.org/10.1016/j.worlddev.2019.05.010
  • Tesfaye, W., & Tirivayi, N. (2018). The impacts of postharvest storage innovations on food security and welfare in Ethiopia. Food Policy, 75, 52–67. https://doi.org/10.1016/j.foodpol.2018.01.004
  • Tigabu, D. G., & Gebeyehu, M. F. (2018). Agricultural extension service and technology adoption for food and nutrition security: Evidence from Ethiopia. Forum for Agricultural Research in Africa (FARA) Research Report, 3(4), 30.
  • Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., & Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology, 114, 355–371. https://doi.org/10.1016/j.tifs.2021.06.004
  • Umair, M., Jabbar, S., Ayub, Z., Muhammad Aadil, R., Abid, M., Zhang, J., & Liqing, Z. (2022). Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation. Food Reviews International, 38(sup1), 789–811. https://doi.org/10.1080/87559129.2021.1888972
  • Utuk, I. O., & Daniel, E. E. (2015). Land degradation: A threat to food security: A global assessment. Journal of Environment & Earth Science, 5(8), 13–21.
  • Verkaart, S., Munyua, B. G., Mausch, K., & Michler, J. D. (2017). Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia? Food Policy, 66, 50–61. https://doi.org/10.1016/j.foodpol.2016.11.007
  • Verner, D., Roos, N., Halloran, A., Surabian, G., Ashwill, M., Vellani, S., & Konishi, Y. (2021). Insect and hydroponic farming in Africa: The new circular food economy. World Bank Publications.
  • Wekesa, B. M., Ayuya, O. I., & Lagat, J. K. (2018). Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agriculture & Food Security, 7(1), 1–14. https://doi.org/10.1186/s40066-018-0230-0
  • Willy, D. K., Zhunusova, E., & Holm-Müller, K. (2014). Estimating the joint effect of multiple soil conservation practices: A case study of smallholder farmers in the Lake Naivasha basin, Kenya. Land Use Policy, 39, 177–187. https://doi.org/10.1016/j.landusepol.2014.02.017
  • Wooldridge, J. M. (2010). Econometric analysis of cross Section and panel data (2nd ed.). MIT Press.
  • Wordofa, M. G., Sassi, M., & Yildiz, F. (2020). Impact of agricultural interventions on food and nutrition security in Ethiopia: Uncovering pathways linking agriculture to improved nutrition. Cogent Food & Agriculture, 6(1), 1724386. https://doi.org/10.1080/23311932.2020.1724386
  • The World Bank. (2015). World Development indicators.
  • The World Food Programme. (2023). A global food crisis. 2023: Another year of extreme jeopardy for those struggling to feed their families. https://www.wfp.org/global-hunger-crisis
  • World Health Organization. (2020). The state of food security and nutrition in the world 2020: Transforming food systems for affordable healthy diets (Vol. 2020). Food & Agriculture Organization.
  • Wossen, T., Alene, A., Abdoulaye, T., Feleke, S., Rabbi, I. Y., & Manyong, V. (2019). Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in Nigeria. Journal of Agricultural Economics, 70(2), 392–407. https://doi.org/10.1111/1477-9552.12296
  • Wudil, A. H., Usman, M., Rosak-Szyrocka, J., Pilař, L., & Boye, M. (2022). Reversing years for global food security: A review of the food security situation in sub-Saharan Africa (SSA). International Journal of Environmental Research and Public Health, 19(22), 14836. https://doi.org/10.3390/ijerph192214836
  • Yilma, T., Berg, E., & Berger, T. (2015). Empowering African women through agricultural technologies: The case of irrigation technology in northern Ghana. Food System Dynamics, 6(2), 64–80.
  • Zegeye, M. B., Fikire, A. H., & Assefa, A. B. (2022). Impact of agricultural technology adoption on food consumption expenditure: Evidence from rural Amhara Region, Ethiopia. Cogent Economics & Finance, 10(1), 2012988. https://doi.org/10.1080/23322039.2021.2012988
  • Zeng, D., Alwang, J., Norton, G. W., Shiferaw, B., Jaleta, M., & Yirga, C. (2017). Agricultural technology adoption and child nutrition enhancement: Improved maize varieties in rural Ethiopia. Agricultural Economics, 48(5), 573–586. https://doi.org/10.1111/agec.12358