518
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Hydrogel and endophytic fungi Trichoderma longibrachiatum; a combination method to ex vitro acclimatization of banana plants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2278930 | Received 13 Jul 2023, Accepted 28 Oct 2023, Published online: 17 Nov 2023

References

  • Alam, B., Lǐ, J., Gě, Q., Khan, M. A., Gōng, J., Mehmood, S., Yuán, Y., & Gǒng, W. (2021). Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Frontiers Plant Science, 12, 791033. https://doi.org/10.3389/fpls.2021.791033
  • Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycology, 95(3), 388–11. PMID: 21156627. https://doi.org/10.1080/15572536.2004.11833083
  • Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.) (p. 218). APS Press, St Paul.
  • Castro-Restrepo, D., Dominguez, M. I., Gaviria-Gutiérrez, B., Osorio, E., & Sierra, K. (2022). Biotization of endophytes Trichoderma asperellum and Bacillus subtilis in Mentha spicata microplants to promote growth, pathogen tolerance and specialized plant metabolites. Plants, 11(11), 2–15. https://doi.org/10.3390/plants11111474
  • Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 1–6. https://doi.org/10.3390/gels3010006
  • Chandran, H., Meena, M., Barupal, T., & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 20, e00450. https://doi.org/10.1016/j.btre.2020.e00450
  • Chang, L., Xu, L., Liu, Y., & Qiu, D. (2021). Superabsorbent polymers used for agricultural water retention. Polymer Testing, 94, 107021. https://doi.org/10.1016/j.polymertesting.2020.107021
  • Collado, J., Platas, G., González, I., & Peláez, F. (1999). Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytology, 144(3), 525–532. https://doi.org/10.1046/j.1469-8137.1999.00533.x.MID:33862861
  • Cubillos, J., Valero, N., & Mejía, L. (2009). Trichoderma harzianum as a promoter of passion fruit plant growth (Passiflora edulis varFlavicarpa Degener). Colombian Agronomy, 27(1), 81–86.
  • Dehkordi, D. K. (2018). Effects of hydrophilic polymers on soil water, wheat plant and microorganisms. Applied Ecology and Environmental Research, 16(2), 1711–1724. https://doi.org/10.15666/AEER/1602_17111724
  • Domínguez, S., Rubio, M. B., Cardoza, R. E., Gutiérrez, S., Nicolás, C., Bettiol, W., Hermosa, R., & Monte, E. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with trichoderma harzianum expressing the Aspergillus nidulans Acetamidase amdS gene. Frontiers in Microbiology, 7, 1182. https://doi.org/10.3389/fmicb.2016.01182
  • dos Reis, J. B. A., Lorenzi, A. S., & Do Vale, H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Archives of Microbiology, 204(675), 2–30. https://doi.org/10.1007/s00203-022-03283-0
  • Dujeshwer, R., & Singh, K. (2018). Effect of hydrogel and Trichoderma on growth and quality of linseed varieties under rainfed condition. International Journal of Chemical Studies, 6(3), 1896–1899. https://doi.org/10.13140/RG.2.2.14830.05447
  • Eastburn, D. M., & Butler, E. (1991). Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycology, 83(3), 257–263. https://doi.org/10.1080/00275514.1991.12026009
  • Firáková, S., Šturdíková, M., & Múčková, M. (2007). Bioactive secondary metabolites produced by microorganisms associated with plants. Biology, 62(3), 251–257. https://doi.org/10.2478/s11756-007-0044-1
  • Galan, V., Rangel, A., Lopez, J., Hernandez, J. B. P., Sandoval, J., & Rocha, H. S. (2018). Propagación del banano: Técnicas tradicionales, nuevas tecnologías e innovaciones. Revista Brasileira de Fruticultura, 40(4), 1–21. https://doi.org/10.1590/0100-29452018574
  • Galindo-Solís, J. M., & Fernández, F. J. (2022). Endophytic Fungal Terpenoids: Natural Role and Bioactivities. Microorganisms [Internet], 10(2), 2–22. ( PMID: 35208794; PMCID: PMC8875210). https://doi.org/10.3390/microorganisms10020339
  • Goettel, M. S., & Douglas, G. I. (1996). Fungi: Hyphomycetes. In L. A. Lacey Ed., Manual of techniques in patology (pp. 221–223). https://doi.org/10.1016/B978-012432555-5/50013-0
  • Grabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal endophytes and their role in Agricultural plant protection against pests and pathogens. Plants, 11(3), 2–29. https://doi.org/10.3390/plants11030384
  • Gundrathi, I., & Babu, P. S. (2019). Enhancing acclimatization of tissue cultured plants of Albizia amara by Biotization. International Journal of Scientific Research in Biological Sciences, 6(4), 43–50. https://doi.org/10.26438/ijsrbs/v6i4.4350
  • Hazarika, B. N. (2003). Acclimatization of tissue-cultured plants. Current Science, 85(12), 1704–1712. https://www.jstor.org/stable/24109975
  • Huang, W. X., Wei, Z. Z., Niu, G. Y., Zhang, Y. J., & Shao, H. F. (2018). Effects of sodium polyacrylate and potassium polymer on growth and physiological characteristics of different flue-cured tobaccos. Bulgarian Chemical Communications, 50(2), 315–323. http://bcc.bas.bg/BCC_Volumes/Volume_50_Number_2_2018/BCC-50-2-2018-APCET-5-Huang-315-323.pdf
  • Husain, M. S. B., Gupta, A., Alashwal, B. Y., & Sharma, S. (2018). Synthesis of PVA/PVP based hydrogel for biomedical applications: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(20), 2388–2393. https://doi.org/10.1080/15567036.2018.1495786
  • Hussain, A., Ahmed, I., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. In A. Leva (Ed.), Recent advances in plant in vitro culture plant. In technology (pp. 2–28). https://doi.org/10.5772/50568
  • Irsyadi, M. B. (2021). Factors that effect of the optimal plantlet growth from tissue culture on the acclimatization stage. Proceeding International Conference on Science and Engineering, 4(3), 100–104. http://ejournal.uin-suka.ac.id/saintek/icse/article/view/2805/2203
  • Knudsen, G. R., & Bin, L. (1990). Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology, 80(8), 724–727. https://doi.org/10.1094/Phyto-80-724
  • Krasnopeeva, E. L., Panova, G. G., & Yakimansky, A. V. (2022). Agricultural Applications of Superabsorbent Polymer Hydrogels. International Journal of Molecular Science, 23(23), 15134–15136. https://doi.org/10.3390/ijms232315134
  • Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding, Y., Scheel, D., Herklotz, S., Hilbert, M., & Zuccaro, A. (2015). Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncom promised plant innate immunity. New Phytology, 207(3), 841–857. PMID: 25919406. https://doi.org/10.1111/nph.13411
  • Lee, T. J., Zobayed, S. M. A., Firmani, F., & Park, E. J. (2019). A novel automated transplanting system for plant tissue culture. Biosystems Engineering, 181(1), 63–72. https://doi.org/10.1016/j.biosystemseng.2019.02.012
  • Mesny, F., Miyauchi, S., Thiergart, T., Pickel, B., Atanasova, L., Karlsson, M., Hüttel, B., Barry, K. W., Haridas, S., Chen, C., Bauer, D., Andreopoulos, W., Pangilinan, J., LaButti, K., Riley, R., Lipzen, A., Clum, A., Drula, E. … Hacquard, S. (2021). Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communication, 12(1), 7227. https://doi.org/10.1038/s41467-021-27479-y
  • Montesano, F. F., Parente, A., Santamaria, P., Sannino, A., & Serio, F. (2015). Biodegradable Superabsorbent hydrogel Increases water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia, 4(11), 451–458. https://doi.org/10.1016/j.aaspro.2015.03.052
  • Ortega-Torres, A. E., Flores-Tejeida, L. B., Guevara-González, R. G., Rico-García, E., & Soto-Zarazúa, G. M. (2020). «El Hidrogel Acrilato De Potasio Como Sustrato En Cultivo De Pepino Y Jitomate». Revista mexicana de ciencias agrícolas, 11(6), 1447–1455. https://doi.org/10.29312/remexca.v11i6.2222
  • Pontes, R. A., Gondim, F. A., & Costa, M. C. G. (2018). Seedling growth of tree species under doses of hydrogel and two levels of luminosity. Árvore Journal, 42(1), 2–9. https://doi.org/10.1590/1806-90882018000100012
  • Ramírez-Torres, D. C., Reyes-López, D., Domínguez-Perales, L. A., Orduño-Cruz, N., Grifaldo-Alcántara, P. F., & Hernández-Domínguez, C. (2022). Endophytism of Trichoderma species and root growth in two varieties of banana in vitro. Acta Agrícola y Pecuaria, 8(1), 1–8. https://doi.org/10.30973/aap/2022.8.0081013
  • Redkar, A., Sabale, M., Zuccaro, A., & DiPietro, A. (2022). Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Current Opinion in Plant Biology, 67, 102226. https://doi.org/10.1016/j.pbi.2022.102226
  • Rivera, R. D., Muekay, C. M., Saltos, J. R. M., & Intriago, D. A. M. (2021). Volumen de humedecimiento por la aplicación de hidrogel en suelos de diferentes texturas. La Granja, 33(1), 67–75. https://doi.org/10.17163/lgr.n33.2021.06
  • Ruano, D., Prieto, P., Rincón, A. M., Gómez-Rodríguez, M. V., Valderrama, R., Barroso, J. B., & Mercado-Blanco, J. (2016). Fate of Trichoderma harzianum in the olive rhizosphere: Time course of the root colonization process and interaction with the fungal pathogen verticillium dahliae. BioControl, 61(3), 269–282. https://doi.org/10.1007/s10526-015-9706-z
  • Ruiz, M. F., Ornelas-Paz, J. D. J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Sepúlveda-Ahumada, D. R., Pérez-Corral, D. A., Rios-Velasco, C., Salas-Marina, M. Á., Fernández-Pavía, S. P., Ruiz-Cisneros, M. F., de Ornelas-Paz, J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Sepúlveda-Ahumada, D. R., Pérez-Corral, D. A., Rios-Velasco, C., Salas-Marina, M. Á., & Fernández-Pavía, S. P. (2018). Effect of Trichoderma spp. And phytopathogenic fungi on plant growth and quality of tomato fruit. Mexican Journal of Phytopathology, 36(3), 444–456. https://doi.org/10.18781/r.mex.fit.1804-5
  • Salgado Pirata, M., Correia, S., & Canhoto, J. (2022). Ex Vitro Simultaneous Acclimatization and Rooting of Tamarillo Plants (Solanum betaceum Cav.) Propagated In Vitro: Effect of Substrate and Mineral Nutrition. Agronomy, 12(5), 2–13. https://doi.org/10.3390/agronomy12051082
  • Samolski, I., Rincón, A. M., Pinzón, L. M., Viterbo, A., & Monte, E. (2012). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology (Reading, England), 158(1), 129–138. https://doi.org/10.1099/mic.0.053140-0
  • Schouten, A. (2019). Endophytic fungi: Definitions, diversity, distribution and their significance in plant life. Centre for Agriculture and Biosciences International. https://doi.org/10.1079/9781786399427.0006
  • Sen, A., Singh, R. K., Yadaw, D., Kumari, P., Srivastava, V. K., Upadhyay, P. K., Sankar, A., Mishra, J., Das, A., Zaidi, N. W., & Dar, M. H. (2019). Effect of Trichoderma and hydrogel on growth, yield, and yield attributes of direct seeded rice (Oryza sativa) under rainfed condition. Indian Journal of Agricultural Sciences, 89(2), 333–338. https://doi.org/10.56093/ijas.v89i2.87094
  • Singh, R. K., Jatav, H. S., Lakpale, R., Khan, M., Rajput, V. D., & Minkina, T. (2022). Hydrogel-based Trichoderma formulation effects on different varieties of rice under rainfed condition of Indo-Gangetic Plains. Environment Development Sustainability, 24(1), 7035–7056. https://doi.org/10.1007/s10668-021-01738-w
  • Sridhar, K. (2012). Aspect, and prospect of endophytic fungi. In S. C. Sati & M. Belwal (Eds.), Microbes: Diversity and biotechnology. (pp. 43–62). Daya Publishing House: ISBN 9788170357940. https://doi.org/10.13140/RG.2.1.4207.5766.
  • Subhashinia, D. V., Anuradhab, M., Damodar, R. D., & Vasanthi, J. (2016). Development of bioconsortia for optimizing nutrient supplementation through microbes for sustainable tobacco production. International Journal of Plant Production, 10(4), 479–490. https://ijpp.gau.ac.ir/article_3044_7fe5184e591e78e073525210d119da7e.pdf
  • Sudha, V., Govindaraj, R., Baskar, K., Al-Dhabi, N., & Duraipandiyan, V. (2016). Biological properties of endophytic fungi. Brazilian Archives of Biology and Technology, 59(1), 1–7. https://doi.org/10.1590/1678-4324-2016150436
  • Tseng, Y.-H., Rouina, H., Groten, K., Rajani, P., Furch, A. C. U., Reichelt, M., Baldwin, I. T., Nataraja, K. N., Uma Shaanker, R., & Oelmüller, R. (2020). An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Frontiers in Plants Science, 11, 573670. https://doi.org/10.3389/fpls.2020.573670
  • Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of trichoderma spp. On tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 341–354. https://doi.org/10.1111/j.1364-3703.2010.00674.x
  • Twaij, B. M., Jazar, Z. H., & Hasan, M. N. (2020). Trends in the use of tissue culture, applications and future aspects. International Journal of Plant Biology, 11(1), 8385. https://doi.org/10.4081/pb.2020.8385
  • Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current state of its application in agriculture for the biological control of fungal phytopathogens and the stimulation of plant growth. International Journal of Molecular Science, 23(4), 2329. https://doi.org/10.3390/ijms23042329
  • Yang, C. R., Feng, W., Liu, J., Qu, Z., & Miao, Q. (2020). Effects of super-absorbent polymer on soil remediation and crop growth in Arid and semi-Arid areas. Sustainability, 12(18), 2–135. https://doi.org/10.3390/su12187825