1,159
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Development and evaluation of some physicochemical qualities, antioxidant properties, and sensory attributes of functional cookies from breadnut seeds flour supplemented with maize and pineapple pomace flours

, ORCID Icon &
Article: 2284232 | Received 18 Jul 2023, Accepted 13 Nov 2023, Published online: 20 Nov 2023

References

  • Adeleke, R. O., & Abiodun, O. A. (2010). Nutritional composition of breadnut seeds (Artocarpus camansi). African Journal of Agricultural Research, 5(11), 1273–17. https://doi.org/10.5897/AJAR10.319
  • Adeyeye, S. A., & Akingbala, J. O. (2016). Quality, functional and sensory properties of cookies produced from sweet potato-maize flour blends. Journal of Culinary Science & Technology, 14(4), 363–376. https://doi.org/10.1080/15428052.2016.1160016
  • Akaffou, F. A., Koffi, D. M., Cisse, M., & Niamké, S. L. (2018). Physicochemical and functional properties of flours from three purple maize varieties named “Violet de Katiola” in Côte d’Ivoire. Asian Food Science Journal, 4(4), 1–10. https://doi.org/10.9734/AFSJ/2018/44034
  • Akinjayeju, O., Fagbemi, T. N., Ijarotimi, O. S., & Awolu, O. O. (2019). Optimization and evaluation of some physicochemical and nutritional properties of cereal-based soya-fortified flours for dough meal. Journal of Advance Food Science and Technology, 6(1), 40–59.
  • Alcon, C. L. M., Barrion, A. S. A., & Nguyen-Orca, M. F. (2021). Proximate composition, antioxidant capacity and functional properties of breadnut seed flour (Artocarpus camansi). Turkish Journal Of Agriculture- Food Science and Technology, 9(8), 1495–1499. https://doi.org/10.24925/turjafv9i8.1495-1499.4319
  • Alka, S., Neelam, Y., & Shruti, S. (2012). Effect of fermentation on physicochemical properties and in vitro starch and protein digestibility of selected cereals. International Journal of Agriculture and Food Science, 2, 66–70.
  • Amadi, J. A. C., Ihemeje, A., & Ezenwa, C. P. (2019). Effect of roasting and germination on proximate, micronutrient and amino acid profile of breadnut seed (Artocarpus camansi) flours. Journal of Food Science and Engineering, 9(5), 174–181. https://doi.org/10.17265/2159-5828/2019.05.003
  • ANSES. (2020). ANSES-CIQUAL French food composition table version 2020. Retrieved September 7, 2020 from, https://ciqual.anses.fr/#.
  • Anuonye, J. C., Badifu, G. I. O., Inyang, C. U., Akpapunam, M. A., Odumudu, C. U., & Mbajika, V. I. (2007). Protein dispersibility index and trypsin inhibitor activity of extruded blends of acha/soybean: A response surface analysis. American Journal of Food Technology, 2(6), 502–511. https://doi.org/10.3923/ajft.2007.502.511
  • Association of Official Analytical Chemists. (2000). Official methods of analysis of AOAC (17th ed. ed.). AOAC International.
  • Association of Official Analytical Chemists. (2006). Official methods of analysis of AOAC (18th ed.). AOAC International.
  • Awolu, O. O., & Olabiran, T. E. (2019). Supplementation of rice flour with carrot, date palm and defatted soybean flours for enhanced nutritional, antioxidants and physicochemical properties. Agriculture and Food Sciences Research, 6(1), 134–144. https://doi.org/10.20448/journal.512.2019.61.134.144
  • Azuan, A. A., Mohd, Z. Z., Hasmadi, M., Rusli, N. D., & Zainol, M. K. (2020). Physicochemical, antioxidant and sensory characteristics of cookies supplemented with different levels of spent coffee ground extract. Journal of Food Research, 4(4), 1181–1190. https://doi.org/10.26656/fr.2017.4(4).058
  • Bello, F. A., Bassey, V. I., & Edet, M. O. (2021). Optimization of cassava, mung bean and coconut pomace flour levels in the production of fiber rich cookies using response surface methodology. Journal of Culinary Science & Technology, 5, 27–32. https://doi.org/10.1080/15428052.2020.1871147
  • Bello, F. A., Folademi, M. A., & Iwok, L. J. (2022). Development of pearl millet flour-based cookies supplemented with mung bean and orange fleshed sweet potato flours. The Annals of the University Dunarea de Jos of Galati Fascicle VI– Food Technology, 46(1), 155–168. https://doi.org/10.35219/10.35219/foodtechnology.2022.1.12
  • Bello, F. A., Ntukidem, O. J., & Oladeji, B. S. (2018). Assessment of chemical compositions, physical and sensory properties of biscuits produced from yellow yam, unripe plantain and pumpkin seed flour blends. International Journal of Food Science & Nutrition Engineering, 8(5), 119–126. https://doi.org/10.5923/j.food.20180805.02
  • Bello, F. A., Oladeji, B. S., & Tom, R. I. (2022). Evaluation of proximate composition, antioxidant and pasting properties of optimized flour blends from pearl millet, green gram and tigernut pomace. Food Science and Engineering, 3(2), 137–146. https://doi.org/10.37256/fse.3220221655
  • Bello, F. A., & Udo, J. A. (2018). Effect of processing methods on the nutritional composition and functional properties of flours from white and yellow local maize varieties. Journal of Advance Food Science and Technology, 5(1), 1–7. https://doi.org/10.9734/CJAST/2017/37311
  • Bolarinwa, I. F., Olaniyan, S. A., Adebayo, L. O., & Ademola, A. A. (2015). Malted sorghum-soy composite flour: Preparation, chemical and physicochemical properties. Journal of Food Processing & Technology, 6(8), 467. https://doi.org/10.4172/2157-7110.1000467
  • Chareonthaikij, P., Uan-On, T., & Prinyawiwatkul, W. (2016). Effects of pineapple pomace fiber on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. International Journal of Food Science and Technology, 51(5), 1120–1129. https://doi.org/10.1111/ijfs.13072
  • Daji, G. A., Green, E., & Adebo, O. A. (2023). Nutritional and phytochemical composition of mahewu (a Southern African fermented food product) derived from white and yellow maize (Zea mays) with different inocula. Fermentation, 9(1), 58. https://doi.org/10.3390/fermentation9010058
  • De Ancos, B., Sgroppo, S., Plaza, L., & Cano, M. P. (2002). Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. Journal of Science, Food and Agriculture, 82(8), 790–796. https://doi.org/10.1002/jsfa.1093
  • Devi, K. L., Karoulia, S., & Chaudhary, N. (2015). Preparation of high fibre cookies from pineapple (ananas comosus) pomace. International Journal of Scientific Research, 5(5), 1368–1372.
  • Edima-Nyah, A. P., Ojimelukwe, P. C., & Nwabueze, T. U. (2019). In vitro nutrient analysis of high fibre snack bars produced from blends of African breadfruit, maize and coconut. Journal of Environmental Science, Toxicology and Food Technology, 19, 52–61. https://doi.org/10.9790/2402-1310015261
  • FAO/WHO/UNU. (2007). WHO technical report series 935. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation. Retrieved June 10, 2021 https://apps.who.int/iris/handle/10665/43411.
  • Gersten, D. (2013). The 20 amino acid: What they are and how they keep you alive and vibrant. The Gersten Institute of Higher Medicine.
  • Giuberti, G., Rocchetti, G., Sigolo, S., Fortunati, P., Lucini, L., & Gallo, A. (2018). Exploitation of alfalfa seed (Medicago sativa L.) flour into gluten-free rice cookies: Nutritional, antioxidant and quality characteristics. Food Chemistry, 239, 679–687. https://doi.org/10.1016/j.foodchem.2017.07.004
  • Go, M. B., Severina, P. V., Minyamin, A. V., Bagsit, R. D., & Romeo, G. P. (2015). Sensory evaluation, shelflife and nutritional composition of breadnut cookies. Tropical Technology Journal, 15(1), 17–21. https://doi.org/10.7603/s40934-015-0009-x
  • Grillo, A., Salvi, L., Coruzzi, P., Salvi, P., & Parati, G. (2019). Sodium intake and hypertension. Nutrient, 11(9), 1970. https://doi.org/10.3390/nu11091970
  • Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food security and the dynamics of wheat and maize value chains in Africa and Asia. Frontiers in Sustainable Food System, 4, 617009. https://doi.org/10.3389/fsufs.2020.617009
  • Iheokoronye, A. I., & Ngoddy, P. O. (1985). Integrated Food Science and Technology for the Tropics. Macmillan Education Ltd London.
  • Jiang, G., Feng, X., Zhao, C., Ameer, K., & Wu, Z. (2022). Development of biscuits supplemented with papaya seed and peel: Effects on physicochemical properties, bioactive compounds, in vitro absorption capacities and starch digestibility. Journal Of Food Science and Technology, 59(4), 1341–1352. https://doi.org/10.1007/s13197-021-05143-z
  • Jiddere, G., & Filli, K. B. (2015). The effect of feed moisture and barrel temperature on the essential amino acids profile of sorghum malt and Bambara groundnut based extrudates. Journal of Food Processing & Technology, 6, 448. https://doi.org/10.4172/2157-7110.1000448
  • Jose, M., Himashree, P., Sengar, A. S., & Sun, C. K. (2022). Valorization of food industry by-product (pineapple pomace): A study to evaluate its effect on physicochemical and textural properties of developed cookies. Measurement: Food, 6, 100031. https://doi.org/10.1016/j.meafoo.2022.100031
  • Karnopp, A. R., Figueroa, A. M., Los, P. R., Teles, J. C., Simões, D. R. S., Barana, A. C., Kubiaki, F. T., de Oliveira, J. G. B., & Granato, D. (2015). Effects of whole-wheat flour and Bordeaux grape pomace (Vitis labrusca L.) on the sensory, physicochemical and functional properties of cookies. Food Science and Technology Campinas, 35(4), 750–756. https://doi.org/10.1590/1678-457X.0010
  • Kırbaş, Z., Kumcuoglu, S., & Tavman, S. (2019). Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. Journal of Food Science and Technology, 56(2), 914–926. https://doi.org/10.1007/s13197-018-03554-z
  • Mancebo, C. M., Rodríguez, P., Martínez, M. M., & Gomez, M. (2018). Effect of the addition of soluble (nutriose, inulin and polydextrose) and insoluble (bamboo, potato and pea) fibres on the quality of sugar-snap cookies. International Journal of Food Science and Technology, 53(1), 129–136. https://doi.org/10.1111/ijfs.13566
  • Man, S., Paucean, A., & Muste, S. (2014). Preparation and quality evaluation of gluten-free biscuit. Bulletin of Food Science and Technology, 7(1), 39–41. https://doi.org/10.15835/buasvmcn-fst:10080
  • Mashau, M. E., Mabodze, T., Tshiakhatho, O. J., Silungwe, H., & Ramashia, S. E. (2020). Evaluation of the content of polyphenols, antioxidant activity and physicochemical properties of tortillas added with Bambara groundnut flour. Molecules, 25(13), 3035. https://doi.org/10.3390/molecules25133035
  • Mohammed, M., & Wickham, L. D. (2011). “Breadnut (Artocarpus camansi blanco)”, in postharvest biology and Technology of Tropical and subtropical fruits, chapter 13(2). In E. M. Yahia, Ed., pp. 272–289. Woodhead Publications Ltd. https://doi.org/10.1533/9780857092762.27
  • Montalvo-González, E., Aguilar-Hernández, G., Hernández-Cázares, A. S., Ruiz-López, I. I., Pérez-Silva, A., Hernández-Torres, J., & María de Los Ángeles Vivar-Vera, M. A. (2018). Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages. CyTa – Journal of Food, 16(1), 831–839. https://doi.org/10.1080/19476337.2018.1465125
  • Nagarajaiah, S. B., & Prakash, J. (2016). Chemical composition and bioactivity of pomace from selected fruits. International Journal of Fruit Science, 16(4), 423–443. https://doi.org/10.1080/15538362.2016.1143433
  • Nayak, B., Liu, R. H., & Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables and grains- a review. Critical Review of Food Science and Nutrition, 55(7), 887–918. https://doi.org/10.1080/10408398.2011.654142
  • Neha, M., & Ramesh, C. (2012). Development of functional biscuit from soy flour and rice bran. International Journal of Agriculture and Food Science, 2(1), 14–20. .
  • Nelson-Quartey, F. C., Amagloh, F. K., Oduro, I. N., & Ellis, W. O. (2007). Formulation of an infant food based on breadfruit and breadnut. Acta Horticulturae, 757(757), 214–215. https://doi.org/10.17660/ActaHortic.2007.757.29
  • Noah, A. A., & Oluwafemi, O. O. (2017). Microbiological quality of raw, boiled and fermented breadnut seed. Journal of Advance Microbiology, 6(3), 1–9. https://doi.org/10.9734/JAMB/2017/36577
  • Nwabueze, T. U., & Enoch, N. T. (2008). Effects of process variable conditions on mineral and chemical composition of extruded African breadfruit mixtures. Journal of Food Processing and Preservation, 33(4), 436–453. https://doi.org/10.1111/j.1745-4549.2008.00250.x
  • Obasi, C. O., & Ifediba, D. I. (2018). Nutritional and sensory evaluation of high fiber biscuits produced from lends of African breadfruit, maize and coconut flours. International Journal of Advances in Scientific Research and Engineering, 13, 42–77. https://doi.org/10.7324/IJASRE.2018.32634
  • Olagunju, A. I., & Ifesan, B. O. T. (2013). Nutritional composition and acceptability of cookies made from wheat flour and germinated sesame (sesamum indicum) flour blends. British Journal of Applied Science & Technology, 3(4), 702–713. https://doi.org/10.9734/BJAST/2013/3547
  • Paesani, C., Bravo-Nú~nez, A., & Gomez, M. (2020). Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. LWT - Food Science and Technology, 132, 109931. https://doi.org/10.1016/j.lwt.2020.109931
  • Park, J., Kwork, C. K., & Yang, Y. J. (2016). The effect of the sodium to potassium ratio on hypertension prevalence: A propensity score matching approach. Nutrients, 8(8), 482. https://doi.org/10.3390/nu8080482
  • Peter, I. A., Okafor, D. C., Kabuo, N. O., Ibeabuchi, J. C., Odimegwu, E. N., Alagbaoso, S. O., Njideka, N. E., & Mbah, R. N. (2017). Production and evaluation of cookies from whole wheat and date palm fruit pulp as sugar substitute. International Journal of Advancement In Engineering Technology, Management & Applied Science, 4(4), 1–31.
  • Poole, N., Donovan, J., & Erenstein, O. (2021). Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy, 100, 101976. https://doi.org/10.1016/j.foodpol.2020.101976
  • Rabeta, M. S., & Syafiqah, M. J. (2016). Proximate composition, mineral and total phenolic contents, and scavenging activity of breadfruit (Artocarpus camansi). Journal of Tropical Agriculture and Food Science, 442, 1–7.
  • Raleng, A., Singh, A., Chavan, P., Attkan, A., & Singh, B. (2019). Standardization of deep‐frying process and their effects on storage stability of pineapple pomace powder‐incorporated rice‐based extruded product. Journal of Food Processing and Preservation, 43(2), 13950. https://doi.org/10.1111/jfpp.13950
  • Ruiz Rodríguez, L. G., Manuel Zamora Gasga, V., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., & Alberto Sánchez Burgos, J. (2020). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/j.foodres.2020.109854
  • Sadal, K. B., Dabhade, S. B., & Bornare, D. T. (2018). Development and quality evaluation of pineapple pomace powder fortified biscuits. International Journal of Chemical Studies, 6(4), 1019–1023.
  • Sahni, P., & Shere, D. M. (2016). Physico-chemical and sensory characteristics of beetroot pomace powder incorporated fibre rich cookies. International Journal of Food Fermentation Technology, 6(2), 309–315. https://doi.org/10.5958/2277-9396.2016.00055.6
  • Selani, M. M., Brazaca, S. G., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163(15), 23–30. https://doi.org/10.1016/j.foodchem.2014.04.076
  • Shastry, M., & John, E. (1991). Biochemical changes and in vitro protein digestibility of the endosperm of germinating Dolichos lablab. Journal of the Science of Food and Agriculture, 55(4), 529–538. https://doi.org/10.1002/jsfa.2740550405
  • Singleton, V. L., Orthofer, R., & Lamuela Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299(1), 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
  • Trehan, S., Singh, N., & Amritpa, K. (2018). Characteristics of white, yellow, purple corn accessions: Phenolic profile, textural, rheological properties and muffin making potential. Journal of Food Science and Technology, 55(6), 2334–2343. https://doi.org/10.1007/s13197-018-3171-5
  • Twum, A. L., Kottoh, I. D., Asare, I. K., Torby‐Tetteh, W., Buckman, E. S., & Adu‐Gyamfi, A. (2015). Physico-chemical and elemental analyses of bananas composite flour for infants. British Journal of Applied Science & Technology, 6(3), 277–284. https://doi.org/10.9734/BJAST/2015/13557
  • Wabali, V. C., Giami, S. Y., Kiin-Kabari, D. B., & Akusu, O. M. (2020). Amino acid profile/score and in-vitro protein digestibility of biscuits produced from wheat flour, African breadfruit flour and moringa seed flour blends. Asian Food Science Journal, 18(1), 34–42. https://doi.org/10.9734/AFSJ/2020/v18i130208
  • Wardlaw, G. M. (2004). Perspectives in nutrition (6th ed.). McGram Hill Companies.
  • Williams, K., & Badrie, N. (2005). Nutritional composition and sensory acceptance of boiled breadnut (Artocarpus camansis Blanco) seeds. Journal of Food Technology, 3(4), 546–551.
  • Yang, B., Yang, H., Li, J., Li, Z., & Jiang, Y. (2011). Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Journal of Food Chemistry, 124(2), 551–555. https://doi.org/10.1016/j.foodchem.2010.06.069
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2