848
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Expression and association of quantitative traits of wheat (Triticum aestivum L.) genotypes under different wheat growing environments

ORCID Icon, &
Article: 2288394 | Received 20 Aug 2023, Accepted 22 Nov 2023, Published online: 14 Dec 2023

References

  • Acuña-Galindo, M. A., Mason, R. E., Subramanian, N. K., & Hays, D. B. (2015). Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Science, 55(2), 477–21. https://doi.org/10.2135/CROPSCI2013.11.0793
  • Akter, N., & Rafiqul Islam, M. (2017a). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5). https://doi.org/10.1007/s13593-017-0443-9
  • Akter, N., & Rafiqul Islam, M. (2017b). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5). https://doi.org/10.1007/S13593-017-0443-9
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J. … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/NCLIMATE2470
  • Balota, M., Green, A. J., Griffey, C. A., Pitman, R., & Thomason, W. (2017). Genetic gains for physiological traits associated with yield in soft red winter wheat in the Eastern United States from 1919 to 2009. The European Journal of Agronomy, 84, 76–83. https://doi.org/10.1016/J.EJA.2016.11.008
  • Barber, H. M., Carney, J., Alghabari, F., & Gooding, M. J. (2015). Decimal growth stages for precision wheat production in changing environments? The Annals of Applied Biology, 166(3), 355–371. https://doi.org/10.1111/AAB.12207
  • Batool, A., Akram, N. A., Cheng, Z. G., Lv, G. C., Ashraf, M., Afzal, M., Xiong, J. L., Wang, J. Y., & Xiong, Y. C. (2019). Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Plant Physiology & Biochemistry: PPB / Societe Francaise de Physiologie Vegetale, 139, 11–20. https://doi.org/10.1016/J.PLAPHY.2019.03.001
  • Berry, P. M., Kendall, S., Rutterford, Z., Orford, S., & Griffiths, S. (2015). Historical analysis of the effects of breeding on the height of winter wheat (triticum aestivum) and consequences for lodging. Euphytica, 203(2), 375–383. https://doi.org/10.1007/S10681-014-1286-Y
  • Berry, P. M., & Spink, J. (2012). Predicting yield losses caused by lodging in wheat. Field Crops Research, 137, 19–26. https://doi.org/10.1016/J.FCR.2012.07.019
  • Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M., & Panth, P. (2021). Effect of drought & irrigated environmental condition on yield & yield attributing characteristic of bread wheat-a review. Reviews in Food and Agriculture, 2(2), 59–62. https://doi.org/10.26480/rfna.02.2021.59.62
  • Bhanu, A. N. (2018). Genetic variability, heritability and correlation study of physiological and yield traits in relation to heat tolerance in wheat (triticum aestivum L.). Biomedical Journal of Scientific & Technical Research, 2(1), Res. 2. https://doi.org/10.26717/bjstr.2017.01.000636
  • Bheemanahalli, R., Sunoj, V. S. J., Saripalli, G., Prasad, P. V. V., Balyan, H. S., Gupta, P. K., Grant, N., Gill, K. S., & Jagadish, S. V. K. (2019). Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Science, 59(2), 684–696. https://doi.org/10.2135/CROPSCI2018.05.0292
  • Chairi, F., Vergara-Diaz, O., Vatter, T., Aparicio, N., Nieto-Taladriz, M. T., Kefauver, S. C., Bort, J., Serret, M. D., & Araus, J. L. (2018). Post-green revolution genetic advance in durum wheat: The case of Spain. Field Crops Research, 228, 158–169. https://doi.org/10.1016/J.FCR.2018.09.003
  • Chavan, S. G., Duursma, R. A., Tausz, M., Ghannoum, O., & Hancock, R. (2019). Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of Experimental Botany, 70(21), 6447–6459. https://doi.org/10.1093/JXB/ERZ386
  • Chaves, M. S., Martinelli, J. A., Wesp-Guterres, C., Graichen, F. A. S., Brammer, S. P., Scagliusi, S. M., da Silva, P. R., Wiethölter, P., Torres, G. A. M., Lau, E. Y., Consoli, L., & Chaves, A. L. S. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5(2), 157–176. https://doi.org/10.1007/S12571-013-0248-X
  • Chen, H., Moakhar, N. P., Iqbal, M., Pozniak, C., Hucl, P., & Spaner, D. (2016a). Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica, 208(2), 377–390. https://doi.org/10.1007/S10681-015-1615-9
  • Chen, H., Moakhar, N. P., Iqbal, M., Pozniak, C., Hucl, P., & Spaner, D. (2016b). Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica, 208(2), 377–390. https://doi.org/10.1007/s10681-015-1615-9
  • Christopher, M., Chenu, K., Jennings, R., Fletcher, S., Butler, D., Borrell, A., & Christopher, J. (2018). QTL for stay-green traits in wheat in well-watered and water-limited environments. Field Crops Research, 217, 32–44. https://doi.org/10.1016/J.FCR.2017.11.003
  • Cossani, C. M., & Reynolds, M. P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719–2735. https://doi.org/10.2135/CROPSCI2015.02.0092
  • Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Vargas, M., Mondal, S., Velu, G., Payne, T. S., Braun, H., & Singh, R. P. (2018). Genetic gains for grain yield in cimmyt’s semi-arid wheat yield trials grown in suboptimal environments. Crop Science, 58(5), 1890–1898. https://doi.org/10.2135/CROPSCI2018.01.0017
  • Dhakal, N., Shrestha, S., Manandhar, H., Aryal, L., C, S., & Pant, K. (2020). Identification of resistant wheat genotypes against spot blotch (bipolaris sorokininana) for different sowing time and assessing their seed infection after harvest at rampur, Chitwan, Nepal. Fundamental and Applied Agriculture, 5, 1. https://doi.org/10.5455/faa.97888
  • Dias de Oliveira, E. A., Siddique, K. H. M., Bramley, H., Stefanova, K., & Palta, J. A. (2015). Response of wheat restricted-tillering and vigorous growth traits to variables of climate change. Global Change Biology, 21(2), 857–873. https://doi.org/10.1111/GCB.12769
  • Divashuk, M. G., Bespalova, L. A., Vasilyev, A. V., Fesenko, I. A., Puzyrnaya, O. Y., & Karlov, G. I. (2013). Reduced height genes and their importance in winter wheat cultivars grown in southern Russia. Euphytica, 190(1), 137–144. https://doi.org/10.1007/S10681-012-0789-7
  • Djanaguiraman, M., Narayanan, S., Erdayani, E., & Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 20(1), 1–12. https://doi.org/10.1186/s12870-020-02479-0
  • Du, Y., Chen, L., Wang, Y., Yang, Z., Saeed, I., Daoura, B. G., & Hu, Y. G. (2018). The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rainfed bread wheat (triticum aestivum L.). Field Crops Research, 215, 149–155. https://doi.org/10.1016/J.FCR.2017.10.015
  • Dwivedi, S. K., Basu, S., Kumar, S., Kumar, G., Prakash, V., Kumar, S., Mishra, J. S., Bhatt, B. P., Malviya, N., Singh, G. P., & Arora, A. (2017a). Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains. Field Crops Research, 206, 106–114. https://doi.org/10.1016/J.FCR.2017.03.006
  • Dwivedi, S. K., Basu, S., Kumar, S., Kumar, G., Prakash, V., Kumar, S., Mishra, J. S., Bhatt, B. P., Malviya, N., Singh, G. P., & Arora, A. (2017b). Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains. Field Crops Research, 206, 106–114. https://doi.org/10.1016/j.fcr.2017.03.006
  • FAO. (2018). World food and agriculture-statistical pocketbook. FAO. https://www.fao.org/documents/card/en/c/ca1796en
  • FAOSTAT. 2022. FAOSTAT [WWW Document]. (Retrieved March 23, 2021). http://www.fao.org/faostat/en/#data/QC
  • Farcas, A. C., Galanakis, C. M., Socaciu, C., Pop, O. L., Tibulca, D., Paucean, A., Jimborean, M. A., Fogarasi, M., Salanta, L. C., Tofana, M., & Socaci, S. A. (2021). Food security during the pandemic and the importance of the bioeconomy in the new era. Sustainability, 13(1), 1–11. https://doi.org/10.3390/SU13010150
  • Ferrari, M., Benvenuti, L., Rossi, L., De Santis, A., Sette, S., Martone, D., Piccinelli, R., Le Donne, C., Leclercq, C., & Turrini, A. (2020). Could dietary goals and climate change mitigation be achieved through optimized diet? The experience of modeling the National food Consumption data in Italy. Frontiers in Nutrition, 7. https://doi.org/10.3389/FNUT.2020.00048
  • Gao, F., Ma, D., Yin, G., Rasheed, A., Dong, Y., Xiao, Y., Xia, X., Wu, X., & He, Z. (2017). Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai Valley since 1950. Crop Science, 57(2), 760–773. https://doi.org/10.2135/CROPSCI2016.05.0362
  • Gomez, D., Vanzetti, L., Helguera, M., Lombardo, L., Fraschina, J., & Miralles, D. J. (2014). Effect of vrn-1, ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Research, 158, 73–81. https://doi.org/10.1016/J.FCR.2013.12.023
  • Grover, G., Sharma, A., Gill, H. S., Srivastava, P., Bains, N. S., & Zhang, A. (2018). Rht8 gene as an alternate dwarfing gene in elite Indian spring wheat cultivars. PLoS One, 13(6), e0199330. https://doi.org/10.1371/JOURNAL.PONE.0199330
  • Guzmán, C., Autrique, E., Mondal, S., Huerta-Espino, J., Singh, R. P., Vargas, M., Crossa, J., Amaya, A., & Peña, R. J. (2017). Genetic improvement of grain quality traits for CIMMYT semi-dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. Field Crops Research, 210, 192–196. https://doi.org/10.1016/J.FCR.2017.06.002
  • IPCC. (2021). Climate change 2021: The physical Science Basis - summary for the policymakers (working group I). https://www.ipcc.ch/report/ar6/wg1/
  • Joshi, M. A., Faridullah, S., & Kumar, A. (2016). Effect of heat stress on crop phenology, yield and seed quality attributes of wheat (triticumaestivum L.). Journal of Agrometeorology, 18(2), 206–215. https://doi.org/10.54386/jam.v18i2.937
  • Joudi, M., Ahmadi, A., Mohammadi, V., Abbasi, A., & Mohammadi, H. (2014). Genetic changes in agronomic and phenologic traits of Iranian wheat cultivars grown in different environmental conditions. Euphytica, 196(2), 237–249. https://doi.org/10.1007/S10681-013-1027-7
  • Kamrani, M., Hoseini, Y., & Ebadollahi, A. (2017). Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 64(1), 38–45. https://doi.org/10.1080/03650340.2017.1326104
  • Khan, A., Ahmad, M., Ahmed, M., & Iftikhar Hussain, M. (2020). Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants (Vol. 10). https://doi.org/10.3390/PLANTS10010043
  • Khan, A., Ahmad, M., Ahmed, M., & Iftikhar Hussain, M. (2021). Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants, 10(1), 1–24. https://doi.org/10.3390/PLANTS10010043
  • Krupnik, T. J., Timsina, J., Devkota, K. P., Tripathi, B. P., Karki, T. B., Urfels, A., Gaihre, Y. K., Choudhary, D., Beshir, A. R., Pandey, V. P., Brown, B., Gartaula, H., Shahrin, S., & Ghimire, Y. N. (2021). Agronomic, socio-economic, and environmental challenges and opportunities in Nepal’s cereal-based farming systems. Advances in Agronomy, 170, 155–287. https://doi.org/10.1016/bs.agron.2021.06.004
  • Lal, M. K., Tiwari, R. K., Gahlaut, V., Mangal, V., Kumar, A., Singh, M. P., Paul, V., Kumar, S., Singh, B., & Zinta, G. (2022). Physiological and molecular insights on wheat responses to heat stress. Plant Cell Reports, 41(3), 501–518. https://doi.org/10.1007/s00299-021-02784-4
  • Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467
  • Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., Martre, P., Ruane, A. C., Wallach, D., Jones, J. W., Rosenzweig, C., Aggarwal, P. K., Alderman, P. D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A. … Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130–1136. https://doi.org/10.1038/nclimate3115
  • Lopes, M. S., Reynolds, M. P., Manes, Y., Singh, R. P., Crossa, J., & Braun, H. J. (2012). Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Science, 52(3), 1123–1131. https://doi.org/10.2135/CROPSCI2011.09.0467
  • Lopes, M. S., Reynolds, M. P., McIntyre, C. L., Mathews, K. L., Jalal Kamali, M. R., Mossad, M., Feltaous, Y., Tahir, I. S. A., Chatrath, R., Ogbonnaya, F., & Baum, M. (2013). QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 126(4), 971–984. https://doi.org/10.1007/S00122-012-2030-4
  • Mahmudul, M., Khan, H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., & Al Mamun, M. (2022). Path-coefficient and correlation analysis in Bambara groundnut (Vigna subterranea [L.] verdc.) accessions over environments. Scientific Reports. https://doi.org/10.1038/s41598-021-03692-z
  • Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B, Biology, 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
  • Mirosavljević, M., Mikić, S., Župunski, V., Kondić Špika, A., Trkulja, D., Ottosen, C. O., Zhou, R., & Abdelhakim, L. (2021). Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars. Journal of Agronomy and Crop Science, 207(5), 823–832. https://doi.org/10.1111/JAC.12546
  • Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R., Singh, G. P., Sohu, V. S., Mavi, G. S., Sukaru, V. S. P., Kalappanavarg, I. K., Mishra, V. K., Hussain, M., Gautam, N. R., Uddin, J., Barma, N. C. D., Hakim, A., & Joshi, A. K. (2013). Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 151, 19–26. https://doi.org/10.1016/j.fcr.2013.06.015
  • Mondal, S., Singh, R. P., Mason, E. R., Huerta-Espino, J., Autrique, E., & Joshi, A. K. (2016). Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Research, 192, 78–85. https://doi.org/10.1016/j.fcr.2016.04.017
  • Mukherjee, A., Wang, S. Y. S., & Promchote, P. (2019). Examination of the climate factors that reduced wheat yield in northwest India during the 2000s. Water (Switzerland), 11(2), 11. https://doi.org/10.3390/W11020343
  • Mwadzingeni, L., Shimelis, H., Rees, D. J. G., Tsilo, T. J., & Yadav, R. S. (2017). Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One, 12(2), 12. https://doi.org/10.1371/journal.pone.0171692
  • Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M., & Sun, Q. (2017). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the under lying molecular mechanisms. The Crop Journal, 6(1), 32–41. https://doi.org/10.1016/j.cj.2017.09.005
  • Oyewole, C. (2016). The wheat Crop. Science, 93(2423), 12–13. https://doi.org/10.1126/science.93.2423.12.t
  • Pan, C., Ahammed, G. J., Li, X., & Shi, K. (2018). Elevated CO2 improves photosynthesis under high temperature by attenuating the Functional limitations to Energy Fluxes, Electron transport and Redox Homeostasis in tomato leaves. Frontiers in Plant Science, 9, 871. https://doi.org/10.3389/FPLS.2018.01739
  • Pandey, G. C., Mamrutha, H. M., Tiwari, R., Sareen, S., Bhatia, S., Siwach, P., Tiwari, V., & Sharma, I. (2015). Physiological traits associated with heat tolerance in bread wheat (triticum aestivum L.). Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 21(1), 93–99. https://doi.org/10.1007/s12298-014-0267-x
  • Pandey, D., Pant, K. R., Bastola, B. R., Giri, R., Bohara, S., Shrestha, S., Hamal, G. B., & Shrestha, J. (2021). Evaluation of bread wheat genotypes under rain-fed conditions in Terai districts of Nepal. Journal of Agriculture and Natural Resources, 4(2), 303–315. https://doi.org/10.3126/JANR.V4I2.33946
  • Pask, A., Joshi, A. K., Manès, Y., Sharma, I., Chatrath, R., Singh, G. P., Sohu, V. S., Mavi, G. S., Sakuru, V. S. P., Kalappanavar, I. K., Mishra, V. K., Arun, B., Mujahid, M. Y., Hussain, M., Gautam, N. R., Barma, N. C. D., Hakim, A., Hoppitt, W., Trethowan, R., & Reynolds, M. P. (2014). A wheat phenotyping network to incorporate physiological traits for climate change in South Asia. Field Crops Research, 168, 156–167. https://doi.org/10.1016/J.FCR.2014.07.004
  • Peña-Bautista, R. J., Hernandez-Espinosa, N., Jones, J. M., Guzmán, C., & Braun, H. J. (2017). CIMMYT series on Carbohydrates, wheat, grains, and health: Wheat-based foods: Their global and regional importance in the food supply, nutrition, and health. Cereal Foods World, 62(5), 231–249. https://doi.org/10.1094/CFW-62-5-0231
  • Posch, B. C., Kariyawasam, B. C., Bramley, H., Coast, O., Richards, R. A., Reynolds, M. P., Trethowan, R., Atkin, O. K., & Raines, C. (2019). Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. Journal of Experimental Botany, 70(19), 5051–5069. https://doi.org/10.1093/JXB/ERZ257
  • Poudel, M. R., Ghimire, S., Prasad, P., Dhakal, K. H., Thapa, D. B., & Poudel, H. K. (2020). Evaluation of wheat genotypes under irrigated,Heat stress and drought conditions. Journal of Biological Today’s World, 9, 212. https://doi.org/10.35248/2322-3308.20.9.212
  • Poudel, A., Thapa, D. B., & Sapkota, M. (2017). Cluster analysis of wheat (triticum aestivum L.) genotypes based upon response to terminal heat stress. International Journal of Applied Sciences and Biotechnology, 5(2), 188–193. https://doi.org/10.3126/IJASBT.V5I2.17614
  • Prasad, P. V. V., & Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: Sensitive stages and thresholds for temperature and duration. Functional Plant Biology: FPB, 41(12), 1261–1269. https://doi.org/10.1071/fp14061
  • Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101–107. https://doi.org/10.1080/02571862.2000.10634878
  • Puri, R. R., & Gautam, N. R. (2015). Performance analysis of spring wheat genotypes under rain-fed conditions in warm humid environment of Nepal. International Journal of Environment, 4(2), 289–295. https://doi.org/10.3126/ije.v4i2.12649
  • Puri, R. R., Tripathi, S., Bhattarai, R., Dangi, S. R., & Pandey, D. (2020). Wheat Variety Improvement for Climate Resilience. Asian Journal of Research in Agriculture and Forestry, 6, 21–27. https://doi.org/10.9734/AJRAF/2020/V6I230101
  • Qaseem, M. F., Qureshi, R., Shaheen, H., Shafqat, N., & Zhang, A. (2019). Genome-wide association analyses for yield and yield-related traits in bread wheat (triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PLoS One, 14(3), e0213407. https://doi.org/10.1371/journal.pone.0213407
  • Rana, L., Banerjee, H., Ray, K., Sarkar, S., Krishi Viswavidyalaya, C., & Shyamala Krishi Vigyan Kendra, S. (2017). System of wheat intensification (SWI) – a new approach for increasing wheat yield in small holder farming system. Journal of Applied and Natural Science, 9(3), 1453–1464. https://doi.org/10.31018/jans.v9i3.1384
  • Sachs, J., Kroll, C., Lafortune, G., Fuller, G., & Woelm, F. (2022). Sustainable Development report 2022. Cambridge University Press. https://doi.org/10.1017/9781009210058
  • Sharma, D., Mamrutha, H. M., Gupta, V. K., Tiwari, R., & Singh, R. (2015). Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Research on Crops, 16(1), 139–146. https://doi.org/10.5958/2348-7542.2015.00020.0
  • Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4(3), 178–202. https://doi.org/10.1002/FES3.64
  • Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/S12571-011-0140-5
  • Shirdelmoghanloo, H., Cozzolino, D., Lohraseb, I., & Collins, N. C. (2016). Truncation of grain filling in wheat (triticum aestivum) triggered by brief heat stress during early grain filling: Association with senescence responses and reductions in stem reserves. Functional Plant Biology: FPB, 43(10), 919–930. https://doi.org/10.1071/FP15384
  • Shirdelmoghanloo, H., Taylor, J. D., Lohraseb, I., Rabie, H., Brien, C., Timmins, A., Martin, P., Mather, D. E., Emebiri, L., & Collins, N. C. (2016). A QTL on the short arm of wheat (triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling. BMC Plant Biology, 16(1). https://doi.org/10.1186/s12870-016-0784-6
  • Shrestha, S. M., Manadhar, H. K., & Yadav, R. K. (2020). Field response of wheat genotypes to spot blotch under different sowing dates at Rampur, Chitwan, Nepal. Journal of Agriculture and Forestry University, 4, 83–90. https://doi.org/10.3126/jafu.v4i1.47050
  • S Kumar, P. K. U. K. M. G. A. S. R. S. R. S., Kumari, P., Kumar, U., Grover, M., Singh, A. K., Singh, R., & Sengar, R. S. (2013). Molecular approaches for designing heat tolerant wheat. Journal of Plant Biochemistry and Biotechnology, 22(4), 359–371. https://doi.org/10.1007/s13562-013-0229-3
  • Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 6931–6936. https://doi.org/10.1073/PNAS.1415181112
  • Tiwari, D. N., Tripathi, S. R., Tripathi, M. P., Khatri, N., & Bastola, B. R. (2019). Genetic variability and correlation coefficients of Major traits in early maturing rice under rainfed lowland environments of Nepal. Advanced Agriculture, 2019. https://doi.org/10.1155/2019/5975901
  • Tshikunde, N. M., Mashilo, J., Shimelis, H., & Odindo, A. (2019). Agronomic and physiological traits, and associated quantitative trait Loci (QTL) affecting yield response in wheat (triticum aestivum L.): A review. Frontiers in Plant Science, 10, 1428. https://doi.org/10.3389/fpls.2019.01428
  • Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H. M., & Farooq, M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208(1), 1–17. https://doi.org/10.1111/jac.12572
  • WBG. (2022). September 2022. International Journal for Modern Trends in Science and Technology, 8. https://doi.org/10.46501/ijmtst0809
  • Whittal, A., Kaviani, M., Graf, R., Humphreys, G., Navabi, A., & Zhang, A. (2018). Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotypes. PLoS One, 13(8), e0203068. https://doi.org/10.1371/JOURNAL.PONE.0203068
  • Yu, T. F., Xu, Z. S., Guo, J. K., Wang, Y. X., Abernathy, B., Fu, J. D., Chen, X., Zhou, Y. B., Chen, M., Ye, X. G., & Ma, Y. Z. (2017). Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/srep44050
  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540
  • Zhang, C. X., Feng, B. H., Chen, T. T., Zhang, X. F., Tao, L. X., & Fu, G. F. (2017). Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regulation, 83(2), 313–323. https://doi.org/10.1007/s10725-017-0296-x
  • Zhang, M., Gao, Y., Zhang, Y., Fischer, T., Zhao, Z., Zhou, X., Wang, Z., & Wang, E. (2020). The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crops Research, 257, 107931. https://doi.org/10.1016/j.fcr.2020.107931
  • Zhang, Y., Xu, W., Wang, H., Dong, H., Qi, X., Zhao, M., Fang, Y., Gao, C., & Hu, L. (2016). Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Research, 199, 117–128. https://doi.org/10.1016/J.FCR.2016.09.022