600
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Optimizing nitrogen fertilizer and planting density levels for maize production under current climate conditions in Northwest Ethiopian midlands

, , , , &
Article: 2289721 | Received 25 Jul 2023, Accepted 27 Nov 2023, Published online: 03 Dec 2023

References

  • Abate, T., Shiferaw, B., Menkir, A., Wegary, D., Kebede, Y., Tesfaye, K., Kassie, M., Bogale, G., Tadesse, B., & Keno, T. (2015). Factors that transformed maize productivity in Ethiopia. Food Security, 7(5), 965–13. https://doi.org/10.1007/s12571-015-0488-z
  • Abera, K., Crespo, O., Seid, J., & Mequanent, F. (2018). Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environmental Systems Research, 7(1). https://doi.org/10.1186/s40068-018-0107-z
  • Adnan, A. A., Diels, J., Jibrin, J. M., Kamara, A. Y., Shaibu, A. S., Craufurd, P., & Menkir, A. (2020, November). CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria. Field Crops Research, 253, 107826. https://doi.org/10.1016/j.fcr.2020.107826
  • Alam, M. M., Basher, M. M., Karim, A., Rahman, M. A., & Islam, M. R. (2003). Effect of rate of nitrogen fertilizer and population density on the yield and yield attributes of maize (Zea mays). Pakistan Journal of Biological Sciences, 6(20), 1770–1773. https://doi.org/10.3923/pjbs.2003.1770.1773
  • Alemayehu, A., & Bewket, W. (2016). Vulnerability of smallholder farmers ’ to climate change and variability in the Central Highlands of Ethiopia Arragaw Alemayehu and woldeamlak Bewket introduction. Ethiopian Journal of the Social Sciences and Humanities, 12(2), 1–24. https://doi.org/10.1016/j.envdev.2017.06.006
  • Aman, M., & Dawid, J. (2020). Morphological response of maize (Zea mays) to nitrogen fertilizer application rate at SNNP, Ethiopia. International Journal of Research Studies in Agricultural Sciences, 6(8), 10–14. https://doi.org/10.20431/2454-6224.0608002
  • Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19(December), 29–41. https://doi.org/10.1016/j.wace.2017.12.002
  • Dinku, T., Block, P., Sharoff, J., Hailemariam, K., Osgood, D., Del Corral, J., Cousin, R., & Thomson, M. C. (2014). Bridging critical gaps in climate services and applications in africa. Earth Perspectives, 1(1), 15. https://doi.org/10.1186/2194-6434-1-15
  • Dinku, T., Hailemariam, K., Maidment, R., Tarnavsky, E., & Connor, S. (2014). Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. International Journal of Climatology, 34(7), 2489–2504. https://doi.org/10.1002/joc.3855
  • Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. (2019). The DSSAT crop modeling ecosystem. https://doi.org/10.19103/as.2019.0061.10
  • Jiang, R., He, W., He, L., Yang, J. Y., Qian, B., Zhou, W., & He, P. (2021). Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79988-3
  • Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., & Singh, U. (1998). Decision support system for agrotechnology transfer: DSSAT v3. Ibsnat, 1993, 157–177. https://doi.org/10.1007/978-94-017-3624-4_8
  • Liu, S., Yang, J. Y., Drury, C. F., Liu, H. L., & Reynolds, W. D. (2014). Simulating maize (Zea mays L.) growth and yield, soil nitrogen concentration, and soil water content for a long-term cropping experiment in Ontario, Canada. Canadian Journal of Soil Science, 94(3), 435–452. https://doi.org/10.4141/CJSS2013-096
  • Meng, C., Wang, Z., Cai, Y., Du, F., Chen, J., & Xiao, C. (2022). Effects of planting density and nitrogen (N) application rate on light energy utilization and yield of maize. Sustainability (Switzerland), 14(24), 16707. https://doi.org/10.3390/su142416707
  • Ren, H., Li, Z., Cheng, Y., Zhang, J., Liu, P., Li, R., Yang, Q., Dong, S., Zhang, J., & Zhao, B. (2020). Narrowing yield gaps and enhancing nitrogen utilization for Summer maize (Zea mays L) by combining the effects of Varying nitrogen fertilizer input and planting density in DSSAT simulations. Frontiers in Plant Science, 11(November). https://doi.org/10.3389/fpls.2020.560466
  • Srivastava, A. K., Mboh, C. M., Faye, B., Gaiser, T., Kuhn, A., Ermias, E., & Ewert, F. (2019). Options for sustainable intensification of maize production in Ethiopia. Sustainability (Switzerland), 11(6), 1707. https://doi.org/10.3390/su11061707
  • Teshome, H., Tesfaye, K., Dechassa, N., Tana, T., & Huber, M. (2021). Smallholder farmers’ perceptions of climate change and adaptation practices for maize production in eastern Ethiopia. Sustainability (Switzerland), 13(17), 9622. https://doi.org/10.3390/su13179622
  • Xu, F., Wang, B., He, C., Liu, D. L., Feng, P., Yao, N., Zhang, R., Xu, S., Xue, J., Feng, H., Yu, Q., & He, J. (2021). Optimizing sowing date and planting density can mitigate the impacts of future climate on maize yield: A case study in the guanzhong plain of china. Agronomy, 11(8), 1452. https://doi.org/10.3390/agronomy11081452
  • Yarnell, A. (2008). Feeding Africa. Chemical & Engineering News, 86(4), 74. https://doi.org/10.1021/cen-v086n004.p074
  • Zhai, J., Zhang, Y., Zhang, G., Xu, W., Xie, R., Ming, B., Hou, P., Wang, K., Xue, J., & Li, S. (2022). Nitrogen application and dense planting to obtain high yields from maize. Agronomy, 12(6), 1308. https://doi.org/10.3390/agronomy12061308
  • Zhang, Y., Xu, Z., Li, J., & Wang, R. (2021). Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Frontiers in Plant Science, 12(November), 1–10. https://doi.org/10.3389/fpls.2021.752606