1,549
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Moving mesh partial differential equations modelling to describe oxygen induced effects on avascular tumour growth

| (Reviewing Editor)
Article: 1050080 | Received 25 Feb 2015, Accepted 28 Apr 2015, Published online: 22 May 2015

References

  • Ambrosi, D., & Mollica, F. (2002). On the mechanics of a growing tumor. International Journal of Engineering Science, 40, 1297–1316.10.1016/S0020-7225(02)00014-9
  • Ambrosi, D., & Preziosi, L. (2002). On the closure of mass balance models for tumor growth. Mathematical Models and Methods in Applied Sciences, 12, 737–754.10.1142/S0218202502001878
  • Amoddeo, A. (2015a). Computers & Mathematics with Applications, 69, 610. Retrieved from http://dx.doi.org/10.1016/j.camwa.2015.01.017
  • Amoddeo, A. (2015b). Nematodynamics modelling under extreme mechanical and electric stresses. Journal of Physics: Conference Series, 574, 012102. doi:10.1088/1742-6596/574/1/012102
  • Amoddeo, A., Barberi, R., & Lombardo, G. (2010). Moving mesh partial differential equations to describe nematic order dynamics. Computers & Mathematics with Applications, 60, 2239–2252.10.1016/j.camwa.2010.08.014
  • Amoddeo, A., Barberi, R., & Lombardo, G. (2011). Electric field-induced fast nematic order dynamics. Liquid Crystals, 38, 93–103.10.1080/02678292.2010.530298
  • Amoddeo, A., Barberi, R., & Lombardo, G. (2012). Surface and bulk contributions to nematic order reconstruction. Physical Review E, 85, 061705.10.1103/PhysRevE.85.061705
  • Amoddeo, A., Barberi, R., & Lombardo, G. (2013). Nematic order and phase transition dynamics under intense electric fields. Liquid Crystals, 40, 799–809.10.1080/02678292.2013.783133
  • Andasari, V., Gerisch, A., Lolas, G., South, A. P., & Chaplain, M. A. J. (2011). Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation. Journal of Mathematical Biology, 63, 141–171.10.1007/s00285-010-0369-1
  • Anderson, A. R. A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology, 60, 857–899.10.1006/bulm.1998.0042
  • Anderson, A. R. A., Chaplain, M. A. J., Newman, E. L., Steele, R. J., & Thompson, A. M. (2000). Mathematical modelling of tumour invasion and metastasis. Journal of Theoretical Medicine, 2, 129–154.10.1080/10273660008833042
  • Anderson, J., Titus, C., Watson, P., & Bos, P. (2000). 35.4: Significant speed and stability increases in multi-dimensional director simulations. SID Symposium Digest of Technical Papers, 31, 906–909.10.1889/1.1833102
  • Araujo, R. P., & McElwain, D. L. S. (2004). A history of the study of solid tumour growth: The contribution of mathematical modelling. Bulletin of Mathematical Biology, 66, 1039–1091.10.1016/j.bulm.2003.11.002
  • Astanin, S., & Preziosi, L. (2008). Multiphase models of tumour growth. In N. Bellomo, M. Chaplain, & E. De Angelis (Eds.), Selected topics in cancer modelling: Genesis, evolution, immune competition, and therapy (pp. 223–254). Boston, MA: Birkhauser.
  • Beckett, G., & Mackenzie, J. A. (2000). Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Applied Numerical Mathematics, 35, 87–109.10.1016/S0168-9274(99)00065-3
  • Beckett, G., Mackenzie, J. A., Ramage, A., & Sloan, D. M. (2001). On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution. Journal of Computational Physics, 167, 372–392.10.1006/jcph.2000.6679
  • Breward, C. J. W., Byrne, H. M., & Lewis, C. E. (2001). Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. European Journal of Applied Mathematics, 12, 529–556.
  • Buchwald, P. (2009). FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theoretical Biology and Medical Modelling, 6, 5.10.1186/1742-4682-6-5
  • Byrne, H. M. (2003). Modelling avascular tumor growth. In L. Preziosi (Ed.), Cancer modelling and simulation (pp. 75–120). Boca Raton, FL: Chapman & Hall/CRC Press.
  • Byrne, H., & Preziosi, L. (2003). Modelling solid tumour growth using the theory of mixtures. Mathematical Medicine and Biology, 20, 341–366.10.1093/imammb/20.4.341
  • Cai, Y., Wu, J., Long, Q., Xu, S., & Li, Z. (2013). 3D numerical simulation of avascular tumour growth: Effect of hypoxic micro-environment in host tissue. Applied Mathematics and Mechanics, 34, 1055–1068. doi:10.1007/s10483-013-1727-x
  • Chaplain, M. A. J., & Anderson, A. R. A. (2003). Mathematical modelling of tissue invasion. In L. Preziosi (Ed.), Cancer modelling and simulation (pp. 269–298). Boca Raton, FL: Chapman & Hall/CRC Press.
  • Chaplain, M. A. J., & Lolas, G. (2005). Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Mathematical Models and Methods in Applied Sciences, 15, 1685–1734.10.1142/S0218202505000947
  • Chaplain, M. A. J., & Lolas, G. (2006). Standard Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Networks and Heterogeneous Media, 1, 399–439.
  • Chaplain, M. A. J., Ganesh, M., & Graham, I. G. (2001). Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth. Journal of Mathematical Biology, 42, 387–423.10.1007/s002850000067
  • Chen, C. Y., Byrne, H. M., & King, J. R. (2001). The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids. Journal of Mathematical Biology, 43, 191–220.10.1007/s002850100091
  • Chichigina, O., Valenti, D., & Spagnolo, B. (2005). A simple noise model with memory for biological systems. Fluctuation and Noise Letters, 05, L243–L250.10.1142/S0219477505002616
  • Cristini, V., Li, X., Lowengrub, J. S., & Wise, S. M. (2009). Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. Journal of Mathematical Biology, 58, 723–763.10.1007/s00285-008-0215-x
  • de Boor, C. (1974). Good approximation by splines with variable knots II. In J. Morris (Ed.), Lecture notes in mathematics (Vol. 263, pp. 12–20). Berlin: Springer-Verlag.
  • Fiasconaro, A., Spagnolo, B., Ochab-Marcinek, A., & Gudowska-Nowak, E. (2006). Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response. Physical Review E, 74, 041904.10.1103/PhysRevE.74.041904
  • Fletcher, C. A. J. (1984). Computational galerkin methods. New York, NY: Springer-Verlag.10.1007/978-3-642-85949-6
  • Folkman, J. (1974). Tumor angiogenesis. Advances in Cancer Research, 19, 331–358.10.1016/S0065-230X(08)60058-5
  • Folkman, J. (1976). The vascularization of tumors. Scientific American, 234, 58–73.10.1038/scientificamerican0576-58
  • Folkman, J., & Klagsbrun, M. (1987). Angiogenic factors. Science, 235, 442–447.10.1126/science.2432664
  • Frehner, M., Schmalholz, S. M., Saenger, E. H., & Steeb, H. (2008). Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves. Physics of the Earth and Planetary Interiors, 171, 112–121.10.1016/j.pepi.2008.07.003
  • Gerisch, A., & Chaplain, M. A. J. (2008). Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion. Journal of Theoretical Biology, 250, 684–704.10.1016/j.jtbi.2007.10.026
  • Graziano, L., & Preziosi, L. (2007). Mechanics in tumour growth. In F. Mollica, L. Preziosi, & K. R. Rajagopal (Eds.), Modeling of biological materials (pp. 263–322). Boston, MA: Birkhauser.
  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.10.1016/S0092-8674(00)81683-9
  • Huang, W. (2001). Practical aspects of formulation and solution of moving mesh partial differential equations. Journal of Computational Physics, 171, 753–775.10.1006/jcph.2001.6809
  • Huang, W., Ren, Y., & Russell, R. D. (1994). Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM Journal on Numerical Analysis, 31, 709–730.10.1137/0731038
  • Hubbard, M. E., & Byrne, H. M. (2013). Multiphase modelling of vascular tumour growth in two spatial dimensions. Journal of Theoretical Biology, 316, 70–89.10.1016/j.jtbi.2012.09.031
  • Levine, H., Pamuk, S., Sleeman, B., & Nilsen-Hamilton, M. (2001). Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma. Bulletin of Mathematical Biology, 63, 801–863.10.1006/bulm.2001.0240
  • Levine, H. A., & Sleeman, B. D. (2003). Modelling tumour induced angiogenesis. In L. Preziosi (Ed.), Cancer modelling and simulation (pp. 147–184). Boca Raton, FL: Chapman & Hall/CRC Press.
  • Lowengrub, J. S., Frieboes, H. B., Jin, F., Chuang, Y. L., Li, X., Macklin, P., … Cristini, V. (2010). Nonlinear modelling of cancer: Bridging the gap between cells and tumours. Nonlinearity, 23, R1–R91.10.1088/0951-7715/23/1/R01
  • Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. Journal of Mathematical Biology, 58, 765–798.10.1007/s00285-008-0216-9
  • McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology, 241, 564–589.10.1016/j.jtbi.2005.12.022
  • McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., & Sherratt, J. A. (2002). Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bulletin of Mathematical Biology, 64, 673–702.10.1006/bulm.2002.0293
  • McDougall, S. R., Watson, M. G., Devlin, A. H., Mitchell, C. A., & Chaplain, M. A. J. (2012). A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature. Bulletin of Mathematical Biology, 74, 2272–2314.10.1007/s11538-012-9754-9
  • Mueller-Klieser, W., Freyer, J. P., & Sutherland, R. M. (1986). Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. British Journal of Cancer, 53, 345–353.10.1038/bjc.1986.58
  • Pereyra, V., & Sewell, E. G. (1975). Mesh selection for discrete solution of boundary problems in ordinary differential equations. Numerische Mathematik, 23, 261–268.
  • Pizzolato, N., Persano Adorno, D., Valenti, D., & Spagnolo, B. (2011). Stochastic dynamics of leukemic cells under an intermittent targeted therapy. Theory in Biosciences, 130, 203–210.10.1007/s12064-011-0127-y
  • Preziosi, L. (2003). Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC Press.10.1201/CHMTHCOMBIO
  • Preziosi, L. (2004). Modelling tumour growth and progression. In A. Buikis, R. Ciegis, & A. D. Fitt (Eds.), Progress in industrial mathematics at ECMI 2002 (pp. 53–66). Berlin: Springer.
  • Preziosi, L., & Tosin, A. R. (2009). Multiphase modelling of tumour growth and extracellular matrix interaction: Mathematical tools and applications. Journal of Mathematical Biology, 58, 625–656.10.1007/s00285-008-0218-7
  • Quarteroni, A. (2009). Numerical models for differential problems. Milan: Springer-Verlag Italia.10.1007/978-88-470-1071-0
  • Ramage, A., & Newton, C. J. P. (2008). Adaptive grid methods for Q-tensor theory of liquid crystals: A one-dimensional feasibility study. Molecular Crystals and Liquid Crystals, 480, 160–181.10.1080/15421400701826225
  • Roose, T., Chapman, S. J., & Maini, P. K. (2007). Mathematical models of avascular tumor growth. SIAM Review, 49, 179–208.10.1137/S0036144504446291
  • Russell, R. D., & Christiansen, J. (1978). Adaptive mesh selection strategies for solving boundary value problems. SIAM Journal on Numerical Analysis, 15, 59–80.10.1137/0715004
  • Sherratt, J. A., & Chaplain, M. A. J. (2001). A new mathematical model for avascular tumour growth. Journal of Mathematical Biology, 43, 291–312.10.1007/s002850100088
  • Simpson, M. J., & Clement, T. P. (2003). Comparison of finite difference and finite element solutions to the variably saturated flow equation. Journal of Hydrology, 270, 49–64.10.1016/S0022-1694(02)00294-9
  • Tang, T. (2005). Recent advances in adaptive computation. Contemporary Mathematics, 383, 141–173.10.1090/conm/383
  • Tracqui, P. (2009). Biophysical models of tumour growth. Reports on Progress in Physics, 72, 056701.10.1088/0034-4885/72/5/056701
  • Valenti, D., Denaro, G., Spagnolo, B., Conversano, F., & Brunet, C. (2015). How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian sea. PLOS ONE, 10(1), e0115468.10.1371/journal.pone.0115468
  • Valenti, D., Schimansky-Geier, L., Sailer, X., & Spagnolo, B. (2006). Moment equations for a spatially extended system of two competing species. The European Physical Journal B, 50, 199–203.10.1140/epjb/e2006-00102-5
  • Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49, 6449–6465.
  • White, Jr., A. B. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM Journal on Numerical Analysis, 16, 472–502.10.1137/0716038
  • Wise, S. M., Lowengrub, J. S., & Cristini, V. (2011). Mathematical and Computer Modelling, 53, 1–20.10.1016/j.mcm.2010.07.007
  • Zienkiewicz, O. C., & Taylor, R. L. (2002). The finite element method. Oxford: Butterworth–Heinemann.