1,591
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

, , & | (Reviewing Editor)
Article: 1169570 | Received 15 Oct 2015, Accepted 20 Mar 2016, Published online: 11 Apr 2016

References

  • Alonso-Redondo, E., Schmitt, M., Urbach, Z., Hui, C. M., Sainidou, R., Rembert, P., … Fytas, G. (2015). A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids. Nature Communications, 6, 1–8. doi:10.1038/ncomms9309
  • Burov, V. A., Voloshinov, V. B., Dmitriev, K. V., & Polikarpova, N. V. (2011). Acoustic waves in metamaterials, crystals and anomalously refracting structures. Uspekhi Fizicheskih Nauk, 181, 1205–1211. doi:10.3367/UFNr.0181.201111i.1205
  • Chen, Y. Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64, 036616-1–036616-6. doi:10.1103/PhysRevE.64.036616
  • Craster, R. V., & Guenneau, S. (2013). Acoustic metamaterials: Negative refraction, imaging, lensing and cloaking. New York, NY: Springer Series in Materials Science.10.1007/978-94-007-4813-2
  • Cummer, S. A., Chritensen, J., & Alui, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1, 7958–7965. doi:10.1038/natrevmats.2016.1
  • Elford, D. P. (2010). Band gap formation in acoustically resonant phononic crystals ( PhD thesis). Loughborough University Institutional Repository, Leicestershire, UK.
  • García-Chocano, V. M., Christensen, J., & Sánchez-Dehesa, J. (2014). Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Physical Review Letters, 112, 14430-1–144301-5. doi:10.1103/PhysRevLett.112.144301
  • Gaur, A. M., & Rana, D. S. (2015). Shear wave propagation in piezoelectric-piezoelectric composite layered structure. Latin American Journal of Solids and Structures, 11, 2483–2496. doi:10.1590/S1679-78252014001300009
  • Kaina, N., Lemoult, F., Fink, M., & Lerosey, G. (2015). Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 525, 77–81. doi:10.1038/nature14678
  • Kildishev, A. V., & Shalaev, V. M. (2011). Transformation optics and metamaterials. Physics-Uspekhi, 54, 53–63. doi:10.3367/UFNe.0181.201101d.0059
  • Kuang, W., Hou, Z., Liu, Y., & Li, H. (2005). The bandgap of a photonic crystal with triangular dielectric rods in a honeycomb lattice. Journal of Optics A: Pure and Applied Optics, 7, 525–528. doi:10.1088/1464-4258/7/10/001
  • Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71, 2022–2025. doi:10.1103/PhysRevLett.71.2022
  • Li, B., Laviage, A. J., You, J. H., & Kim, Y.-J. (2013). Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator. Applied Acoustics, 74, 1271–1278. doi:10.1016/j.apacoust.2013.04.015
  • Lock, E. H. (2008). The properties of isofrequency dependences and the laws of geometrical optics. Physics-Uspekhi, 51, 375–393. doi:10.1070/PU2008v051n04ABEH006460
  • Lucklum, R. (2014). Phononic crystals and metamaterials —Promising new sensor platforms. Procedia Engineering, 87, 40–45. doi:10.1016/j.proeng.2014.11.261
  • Lv, H., Tian, X., Wang, M. Y., & Li, D. (2013). Vibration energy harvesting using a phononic crystal with point defect states. Applied Physics Letters, 102, 034103-1–034103-3. doi:10.1063/1.4788810
  • Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378, 241–241. doi:10.1038/378241a0
  • Olsson III, R. H., & El-Kady, I. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20, 1–13. doi:10.1088/0957-0233/20/1/012002
  • Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J., & Hladky-Hennion, A.-C. (2009). Phononic crystals and manipulation of sound. Physica Status Solidi (c), 6, 2080–2085. doi:10.1002/pssc.200881760
  • Pichard, H., Duclos, A., Groby, J.-P., Tournat, V., & Gusev, V. E. (2012). Two-dimensional discrete granular phononic crystal for shear wave control. Physical Review B, 86, 134307-1–134307-12. doi:10.1103/PhysRevB.86.134307
  • Qian, Z.-H., Jin, F., Li, F.-M., & Kishimoto, K. (2008). Complete band gaps in two-dimensional piezoelectric phononic crystals with {1–3} connectivity family. International Journal of Solids and Structures, 45, 4748–4755. doi:10.1016/j.ijsolstr.2008.04.012
  • Ruffa, A. (1992). Acoustic wave propagation through periodic bubbly liquids. The Journal of the Acoustical Society of America, 91(1), 1–11. doi:10.1121/1.402755
  • Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound attenuation by a two-dimensional array of rigid cylinders. Physical Review Letters, 80, 5325–5328. doi:10.1103/PhysRevLett.80.5325
  • Sigalas, M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158, 377–382. doi:10.1016/0022-460X(92)90059-7
  • Sigalas, M., & Economou, E. N. (1993). Band structure of elastic waves in two dimensional systems. Solid State Communications, 86, 141–143. doi:10.1016/0038-1098(93)90888-T
  • Spitsyn, A. S., & Glinskiĭ, G. F. (2008). Properties of waveguide modes in a photon crystal based on slotted silicon with a defect. Semiconductors (Translation of Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg)), 42, 1237–1243. doi:10.1134/S1063782608100175
  • Tanaka, Y., & Tamura, S. I. (1998). Surface acoustic waves in two-dimensional periodic elastic structures. Physical Review B, 58, 7958–7965. doi:10.1103/PhysRevB.58.7958
  • Walker, P. M., Sharp, J. S., Akimov, A. V., & Kent, A. J. (2010). Coherent elastic waves in a one-dimensional polymer hypersonic crystal. Applied Physics Letters, 97, 073106-1–073106-3. doi:10.1063/1.3479929
  • Wang, R., Wang, X.-H., Gu, B.-Y., & Yang, G.-Z. (2001). Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. Journal of Applied Physics, 90, 4307–4313. doi:10.1063/1.1406965
  • Wang, Y., Song, W., Sun, E., Zhang, R., & Cao, W. (2014). Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer. Physica E: Low-dimensional Systems and Nanostructures, 60, 37–41. doi:10.1016/j.physe.2014.02.001
  • Wang, Y.-Z., Li, F.-M., Huang, W.-H., Jiang, X., Wang, Y.-S., & Kishimoto, K. (2008). Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. International Journal of Solids and Structures, 45, 4203–4210. doi:10.1016/j.ijsolstr.2008.03.001
  • Yariv, D. A., & Yeh, P. (2006). Photonics: Optical Electronics in Modern Communications (6th ed.). New York, NY: Oxford University Press.