1,125
Views
2
CrossRef citations to date
0
Altmetric
Research Article

High gain, directive and miniaturized metamaterial C-band antenna

, & | (Reviewing Editor)
Article: 1236510 | Received 15 Jul 2016, Accepted 09 Sep 2016, Published online: 30 Sep 2016

References

  • Balanis, C. A. (1999). Antenna theory. New York, NY: Wiley.
  • Barasara, D. J., Prajapati, J. C., & Dethalia, A. M. (2012). Multi frequency fractal antenna. International Journal of Scientific & Engineering Research, 3, 1–3. ISSN .
  • Benosman, H., & Hacene, N. B. (2012). Design and simulation of double “S” shaped metamaterial. International Journal of Computer Science Issues, 9, 534–537. ISSN (Online): .
  • Best, S. R., & Morrow, J. D. (2002). The effectiveness of space-filling fractal geometry in lowering resonant frequency. IEEE Antennas and Wireless Propagation Letters, 1, 112–115.10.1109/LAWP.2002.806050
  • Chen, H., Ran, L., Huangfu, J., & Zhang, X. (2004). Left-handed materials composed of only S-shaped resonator. Physical Review E, 70, 940–942.
  • Cohen, N. (1997). Fractal antenna applications in wireless telecommunications. In Professional Program Proceedings of Electronics Industries Forum of New England (pp. 43–49). IEEE.
  • Coher, N. (1995). Fractal antenna part-1: Introduction and the fractal quad. Communications Quaterly, 7–22.
  • Dhouibi, B., & Lustrac, P. (2013). Analysis of a subwavelength Z-shaped metamaterial. IOP Conference Series: Materials Science and Engineering, 44, 012011.
  • Ekmekci, E., & Sayan, G. T. (2007, December). Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using S-parameters. In Proceedings of the 5th International Conference on Electrical and Electronics Engineering (pp. 5–9). Bursa.
  • Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine, 44, 20–36.10.1109/74.997888
  • Ionescu, D., & Kovaci, M. (2011). About the negative permittivity of some metamaterial composites–simulational study. In IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 197–200). Timisoara. 10.1109/SIITME.2011.6102717
  • Islam, S. S., Faruque, M. R. I., & Islam, M. T. (2014). The design and analysis of a novel split-H-shaped metamaterial for multi-band microwave applications. Materials, 7, 4994–5011.10.3390/ma7074994
  • Mahatthanajatuphat, C., Saleekaw, S., & Akkaraekthalin, P. (2009). A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application. Progress in Electromagnetics Research, 89, 57–74.10.2528/PIER08111907
  • Mallik, A., Kundu, A. S., & Goni, M. O. (2013). Design of a novel two-rectangular U-shaped double negative metamaterial. In Proceedings of the International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 17–18). Dhaka.
  • Parul, D., & De, A. (2013, September 20–22). Bandwidth enhancement of RMPA using ENG metamaterials at THz. In International Conference on Computer Advances in Engineering and Technology (ICCCT-2013) held at MotiLal Nehru National Institute of Technology (pp. 11–16). Allahabad: IEEE Xplore. ISBN: 978-1-4799-1569-9.
  • Pozar, D. M. (1992). Microstrip antennas. Proceedings of the IEEE, 80, 79–91.10.1109/5.119568
  • Schantz, H. (2005). The art and science of ultra wideband antennas. Norwood, MA: Artech House.
  • Singh, K., Grewal, V., & Saxena, R. (2009). Fractal antennas, a novel miniaturization technique for wireless communications. International Journal of Recent Trends in Engineering, 2, 172–176.
  • Vinoy, K. J. (2002). Fractal shaped antenna elements for wide and multi-band wireless applications (thesis). Pennsylvania State University, Pennsylvania, PA.
  • Withayachumnankul, W., & Abbott, D. (2009). Metamaterials in the terahertz regime. IEEE Photonics Journal, 1, 99–118.10.1109/JPHOT.2009.2026288