1,272
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of high-quality cobalt vanadate crystals and their applications in lithium-ion batteries

, , , , , & | (Reviewing Editor) show all
Article: 1265778 | Received 12 Oct 2016, Accepted 23 Nov 2016, Published online: 23 Dec 2016

References

  • Amdouni, N. (2003). Structural and electrochemical properties of LiCoO2 and LiAlyCo1−yO2 (y=0.1 and 0.2) oxides: A comparative study of electrodes prepared by the citrate precursor route. Ionics, 9, 47–55.10.1007/BF02376536
  • Catti, M. (2000). Ab initio study of Li+ diffusion paths in the monoclinic Li 0.5 CoO 2 intercalate. Physical Review B, 61, 1795–1803. doi:10.1103/PhysRevB.61.1795
  • Dong, Q., Kumada, N., Yonesaki, Y., Takei, T., & Kinomura, N. (2011). Synthesis of LiCoO2 via a facile hydrothermal-assisted route. Journal of the Ceramic Society of Japan, 119, 538–540.10.2109/jcersj2.119.538
  • Fan, C. L., & Chen, H. (2011). Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries. Journal of Materials Science, 46, 2140–2147.10.1007/s10853-010-5050-y
  • Gao, X. G., Ruiz, P., Xin, Q., Guo, X. X., & Delmon, B. (1994). Preparation and characterization of three pure magnesium vanadate phases as catalysts for selective oxidation of propane to propene. Catalysis Letters, 23, 321–337. 10.1007/BF00811367
  • Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–203.10.1021/cm901452z
  • Guo-rong, H., Gang, L., Zhong-dong, P., Jin, X., Xin-lon, Z., & Xiao-yuan, Y. (2004). Structure and electrochemical properties of LiCoO2 synthesized by microwave heating. Journal of Central South University of Technology, 11, 261. doi:10.1007/s11771-004-0053-y
  • Hao, Y., Lai, Q., Xu, Z., Liu, X., & Ji, X. (2005). Synthesis by TEA sol–gel method and electrochemical properties of LiTiO anode material for lithium-ion battery. Solid State Ionics, 176, 1201–1206. doi:10.1016/j.ssi.2005.02.010
  • Jiang, J., Li, Y. Y., Liu, J. P., & Huang, X. T. (2011). Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 3, 45–58.10.1039/C0NR00472C
  • Julien, C. (2000). Local cationic environment in lithium nickel-cobalt oxides used as cathode materials for lithium batteries. Solid State Ionics, 136–137, 887–896.
  • Khatun, F., Gafur, M. A., Ali, M. S., Islam, M. S., & Sarker, M. A. R. (2014). Impact of lithium composition on structural, electronic and optical properties of lithium cobaltite prepared by solid state reaction. Journal of Science Research, 6, 214–231.
  • Kim, B., Kim, B. H., Kim, K., Choi, H. C., Park, S. Y., Jeong, Y. H., & Min, B. I. (2012). Unusual magnetic properties induced by local structure in a quasi-one-dimensional Ising chain system: α-CoV2O6. Physical Review B, 85, 220 407 (R)–220 413 (R).10.1103/PhysRevB.85.220407
  • Kingegy, W. D. (1960). Introduction to ceramic. New York, NY: Wiley.
  • Koksbang, R., Barker, J., Shi, H., & Saidi, M. Y. (1996). Cathode materials for lithium rocking chair batteries. Solid State Ionics, 84, 1–21. doi:10.1016/S0167-2738(96)83001-3
  • Li, H., Wang, Z. X., Chen, L. Q., & Huang, X. J. (2009). Research on advanced materials for Li-ion batteries. Advanced Materials, 21, 4593–4607.10.1002/adma.v21:45
  • Liu, J., Wen, Z. Y., Wu, M. M., Gu, Z. H., Chao, J. D., & Lin, Z. X. (2002). Synthesis by a complexation route and characterization of LiCoO2 cathode materials. Journal of Inorganic Materials, 17, 1157–1162.
  • Ma, H., Zhang, S. Y., Ji, W. Q., Tao, Z. L., & Chen, J. (2008). α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. Journal of the American Chemical Society, 130, 5361–5367.10.1021/ja800109u
  • Mai, L. Q., Xu, L., Gao, Q., Han, C. H., Hu, B., & Pi, Y. Q. (2010). Single β-AgVO3 nanowire H2S sensor. Nano Letters, 10, 2604–2608.10.1021/nl1013184
  • Minakshi, M., Singh, P., Appadoo, D., & Martin, D. E. (2011). Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochimica Acta, 56, 4356–4360.10.1016/j.electacta.2011.01.017
  • Myung, S. T., Amine, K., & Sun, Y. K. (2010). Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 20, 7074–7095.10.1039/c0jm00508h
  • Rajasekar, K., Kungumadevi, L., Subbarayan, A., & Sathyamoorthy, R. (2008). Thermal sensors based on Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 thin films. Ionics, 14, 69–72. doi:10.1007/s11581-007-0146-3
  • Ramkumar, R., & Minakshi, M. (2015). Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Transactions, 44, 6158–6168.10.1039/C5DT00622H
  • Ravichandran, K., Muruganantham, G., & Sakthivel, B. (2009). Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique. Physica B: Condensed Matter, 404, 4299–4302. doi:10.1016/j.physb.2009.08.017
  • Shi, H. F., Li, Z. S., Kou, J. H., Ye, J. H., & Zou, Z. G. (2011). Facile synthesis of single-crystalline Ag2V4O11 nanotube material as a novel visible-light-sensitive photocatalyst. The Journal of Physical Chemistry C, 115, 145–151.10.1021/jp102680y
  • Sivaprakash, S., Majumder, S. B., Nieto, S., & Katiyar, R. S. (2007). Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. Journal of Power Sources, 170, 433–440. doi:10.1016/j.jpowsour.2007.04.029
  • Song, J. M., Lin, Y. Z., Yao, H. B., Fan, F. J., Li, X. G., & Yu, S. H. (2009). Superlong β-AgVO3 nanoribbons: High-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. ACS Nano, 3, 653–660.10.1021/nn800813s
  • Song, H. K., Lee, K. T., Kim, M. G., Nazar, L. F., & Cho, J. (2010). Recent progress in nanostructured cathode materials for lithium secondary batteries. Advanced Functional Materials, 20, 3818–3834.10.1002/adfm.201000231
  • Tang, Y., Zhou, J., Liu, J., Liu, L., & Liang, S. (2013). Facile synthesis of cobalt vanadium oxides and their applications in lithium ion batteries. International Journal of Electrochemical Science, 8, 1138–1145.
  • Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.10.1038/35104644
  • Thackeray, M. M. (1995). Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. Journal of The Electrochemical Society, 142, 2558–2563. doi:10.1149/1.2050053
  • Xu, A. J., Lin, Q., Jia, M. L., & Zhaorigetu, B. (2008). Studies on the oxidative dehydrogenation of propane to propene over Co-V-O catalysts. Reaction Kinetics and Catalysis Letters, 93, 273–280.10.1007/s11144-008-5220-y
  • Yilmaz, M., Aydin, S., Turgut, G., Dilber, R., & Ertugrul, M. (2012). Preparation of LiCoO2 and LiNixCo1-xO2 by solid state reaction technique. Progress in Nanotechnology and Nanomaterials, 1, 5–8.
  • Yilmaz, M., Turgut, G., Aydin, S., & Ertugrul, M. (2012). LiCoO2 structures by spray pyrolysis technique for rechargeable Li-ion battery. Journal of the Chemical Society of Pakistan, 34, 283–286.
  • Yoshino, A. (2012). The birth of the lithium ion battery. Angewandte Chemie International Edition, 51, 5798–5800.