1,348
Views
17
CrossRef citations to date
0
Altmetric
Review Article

High-speed all-optical logic gate using QD-SOA and its application

ORCID Icon, & | (Reviewing Editor)
Article: 1388156 | Received 01 May 2017, Accepted 26 Sep 2017, Published online: 23 Oct 2017

References

  • Akiyama, T., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., Sugawara, M., … Ishikawa, H. (2000). Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device. IEEE Photonics Technology Letters, 12(10), 1301–1303.10.1109/68.883810
  • Akiyama, T., Wada, O., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., … Ishikawa, H. (2000). Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers. Applied Physics Letters, 77(12), 1753.10.1063/1.1311319
  • Berg, T., & Mork, J. (2004). Saturation and noise properties of quantum-dot optical amplifiers. IEEE Journal of Quantum Electronics, 40(11), 1527–1539.10.1109/JQE.2004.835114
  • Berg, T. W., & Mørk, J. (2003). Quantum dot amplifiers with high output power and low noise. Applied Physics Letters, 82(18), 3083–3085.10.1063/1.1571226
  • Bintjas, C., Kalyvas, M., Theophilopoulos, G., Stathopoulos, T., Avramopoulos, H., Occhi, L., … Dall’ Ara, R. (2000). 20 Gb/s all-optical XOR with UNI gate . IEEE Photonics Technology Letters, 12(7), 834–836.10.1109/68.853516
  • Chan, K., Chan, C., Chen, L., & Tong, F. (2004). Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. IEEE Photonics Technology Letters, 16(3), 897–899.10.1109/LPT.2004.823750
  • Diez, S., Schubert, C., Ludwig, R., & Ehrke, H. (2000). 160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach–Zehnder interferometer . Electronics Letters, 36(17), 1484–1486.10.1049/el:20001041
  • Dong, H., Sun, H., Wang, Q., Dutta, N. K., & Jaques, J. (2006). All-optical logic and operation at 80 Gb/s using semiconductor optical amplifier based on the Mach–Zehnder interferometer. Microwave and Optical Technology Letters, 48(8), 1672–1675.10.1002/(ISSN)1098-2760
  • Dorren, H. J. S., Hill, M. T., Liu, Y., Calabretta, N., Srivatsa, A., Huijskens, F. M., … Khoe, G. D. (2003). Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology, 21(1), 2–12.10.1109/JLT.2002.803062
  • Dutta, N. K., & Wang, Q. (2006). Semiconductor optical amplifier. Singapore: World Scientific.10.1142/5879
  • Golomb, S. W. (1967). Shift register sequences. San Francisco: Holden-Day.
  • Houbavlis, T., Zoiros, K., Hatziefremidis, A., Avramopoulos, H., Occhi, L., Guekos, G., … Dall’ Ara, R. (1999). 10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate. Electronics Letters, 35(19), 1650.10.1049/el:19991142
  • Hu, H., Zhang, X., Li, W., & Dutta, N. K. (2016). Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers. SPIE Defense + Security, 983630–983630-8.
  • Kalyvas, M., Yiannopoulos, K., Houbavlis, T., & Avramopoulos, H. (2003). Design algorithm of all-optical linear feedback shift registers. AEU - International Journal of Electronics and Communications, 57(5), 328–332.10.1078/1434-8411-54100179
  • Kang, I., Dorrer, C., Liming, Z., Dinu, M., Rasras, M., Buhl, L., … Jaques, J. (2008). Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 14(3), 758–769.10.1109/JSTQE.2008.917020
  • Kang, I., Dorrer, C., Zhang, L., Rasras, M., Buhl, L., Bhardwaj, A., … Giles, C. R. (2005). Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach–Zehnder interferometer. In ECOC 2005, paper Th4.3.3.
  • Kim, J., Jhon, Y., Byun, Y., Lee, S., Woo, D., & Kim, S. (2002). All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 14(10), 1436–1438.
  • Li, W. (2015). High speed all optical switching and encryption using ultrafast devices (Doctoral dissertations). 956. Retrieved from http://digitalcommons.uconn.edu/dissertations/956
  • Li, W., Ma, S., Hu, H., & Dutta, N. K. (2012a). All optical latches using quantum-dot semiconductor optical amplifier. Optics Communications, 285(24), 5138–5143.10.1016/j.optcom.2012.07.085
  • Li, W., Ma, S., Hu, H., & Dutta, N. K. (2012b). All-optical latches based on two-photon absorption in semiconductor optical amplifiers. Journal of the Optical Society of America B, 29(9), 2603–2609.10.1364/JOSAB.29.002603
  • Li, W., Hu, H., & Dutta, N. K. (2013a). Optical latches using optical amplifiers. SPIE Defense, Security, and Sensing, 87200O-1–87200O-9.
  • Li, W., Hu, H., & Dutta, N. K. (2013b). High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers. Journal of Modern Optics, 60(20), 1741–1749.10.1080/09500340.2013.856486
  • Li, W., Hu, H., & Dutta, N. K. (2014). High speed all-optical PRBS generation using binary phase shifted keyed signal based on QD-SOA. SPIE Proceedings, 9202.
  • Li, W., Hu, H., Zhang, X., & Dutta, N. K. (2015). High speed all optical logic gates using binary phase shift keyed signal based on QD-SOA. International Journal of High Speed Electronics and Systems, 24(3).
  • Li, W., Hu, H., Zhang, X., Zhao, S., Fu, K., & Dutta, N. K. (2016). High-speed ultrashort pulse fiber ring laser using charcoal nanoparticles. Applied Optics, 55(9), 2149.10.1364/AO.55.002149
  • Li, Z., Liu, Y., Zhang, S., Ju, H., de Waardt, H., Khoe, G. D., … Lenstra, D. (2005). All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters, 41(25), 1397.10.1049/el:20053385
  • Ma, S., Chen, Z., Sun, H., & Dutta, N. K. (2010). High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Optics Express, 18(7), 6417–6422.10.1364/OE.18.006417
  • Ma, S., Li, W., Hu, H., & Dutta, N. K. (2012). Optical processors using semiconductor optical amplifiers. SPIE Defense, Security, and Sensing, 840303–840303-4.
  • Mukai, K., Nakata, Y., Shoji, H., Sugawara, M., Ohtsubo, K., Yokoyama, N., & Ishikawa, H. (1998). Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots. Electronics Letters, 34(16), 1588.10.1049/el:19981075
  • Reithmaier, P., & Eisenstein, G. (2008). Semiconductor optical amplifiers with nanostructured gain material. In Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuN1.
  • Ridha, P., Li, L., Rossetti, M., Patriarche, G., & Fiore, A. (2008). Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots. Optical and Quantum Electronics, 40(2–4), 239–248.10.1007/s11082-007-9173-6
  • Senior, J. M. (1985). Optical fibre communications – Principles and practice. London: Prentice-Hall.
  • Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A. B., & Dutta, N. K. (2004). Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE Journal of Quantum Electronics, 40(6), 703–710.10.1109/JQE.2004.828261
  • Zhang, X., Hu, H., Li, W., & Dutta, N. K. (2016). High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking. Applied Optics, 55(28), 7885–7891.10.1364/AO.55.007885
  • Zhang, X., Li, W., Hu, H., & Dutta, N. K. (2015a). Two-photon absorption-based optical logic. SPIE Defense + Security, 946731–946731-10.
  • Webb, R., Manning, R., Maxwell, G., & Poustie, A. (2003). 40  Gbit∕s all-optical XOR gate based on hybrid-integrated Mach–Zehnder interferometer . Electronics Letters, 39(1), 79–81.10.1049/el:20030010
  • Zhang, X., Li, W., Hu, H., & Dutta, N. K. (2015b). High speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. Journal of Optical Communications and Networking, 7(4), 276–285.
  • Zoiros, K. E., Houbavlis, T., & Kalyvas, M. (2004). Ultra-high speed all-optical shift registers and their applications in OTDM networks. Optical and Quantum Electronics, 36(11), 1005–1053.10.1007/s11082-004-2040-9