489
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of butanol and salt concentration on solid-state nanopores resistance

, , , ORCID Icon, , , , , & | (Reviewing Editor) show all
Article: 1225345 | Received 07 Jun 2016, Accepted 10 Aug 2016, Published online: 22 Sep 2016

References

  • Ayub, M., Ivanov, A., Instuli, E., Cecchini, M., Chansin, G., McGilvery, C., … Albrecht, T. (2010). Nanopore/electrode structures for single-molecule biosensing. Electrochimica Acta, 55, 8237–8243.
  • Chang, H., Kosari, F., Andreadakis, G., Alam, M., Vasmatzis, G., & Bashir, R. (2004). DNA-Mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letters, 4, 1551–1556.10.1021/nl049267c
  • Chapman, C., Fee, R., & Maroncelli, M. (1995). Measurements of the solute dependence of solvation dynamics in 1-propanol: The role of specific hydrogen-bonding interactions. The Journal of Physical Chemistry, 99, 4811–4819.10.1021/j100013a060
  • Chen, B., Siepmann, J. I., & Klein, M. L. (2002). Vapor−Liquid interfacial properties of mutually saturated water/1-butanol solutions. Journal of the American Chemical Society, 124, 12232–12237.10.1021/ja027130n
  • Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S., & Li, J. (2005). Slowing DNA translocation in a solid-state nanopore. Nano Letters, 5, 1734–1737.10.1021/nl051063o
  • Fologea, D., Ledden, B., McNabb, D. S., & Li, J. (2007). Electrical characterization of protein molecules by a solid-state nanopore. Applied Physics Letters, 91, 053901.10.1063/1.2767206
  • Gadgil, V., Tong, H., Cesa, Y., & Bennink, M. (2009). Fabrication of nano structures in thin membranes with focused ion beam technology. Surface and Coatings Technology, 203, 2436–2441.10.1016/j.surfcoat.2009.02.036
  • Iqbal, S. M., Akin, D., & Bashir, R. (2007). Solid-state nanopore channels with DNA selectivity. Nature Nanotechnology, 2, 243–248.10.1038/nnano.2007.78
  • Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf, D., Smeets, R. M. M., Lemay, S. G., ... Dekker, C. (2006). Direct force measurements on DNA in a solid-state nanopore. Nature Physics, 2, 473–477.10.1038/nphys344
  • Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore fabrication by controlled dielectric breakdown. PLoS ONE, 9, e92880.10.1371/journal.pone.0092880
  • Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101, 209–228.10.1002/bit.v101:2
  • Müller-plathe, F. (1996). An All-Atom Force Field for Liquid Ethanol-Properties of Ethanol-Water Mixtures. Molecular Simulation, 18, 133–143.10.1080/08927029608022358
  • Mussi, V., Fanzio, P., Repetto, L., Firpo, G., Valbusa, U., Scaruffi, P., ... Tonini, G. P. (2009). Solid state nanopores for gene expression profiling. Superlattices and Microstructures, 46, 59–63.10.1016/j.spmi.2008.09.003
  • Mussi, V., Fanzio, P., Repetto, L., Firpo, G., Scaruffi, P., Stigliani, S., … Valbusa, U. (2010). Electrical characterization of DNA-functionalized solid state nanopores for bio-sensing. Journal of Physics: Condensed Matter, 22, 454104.
  • Park, S. R., Peng, H., & Ling, X. S. (2007). Fabrication of nanopores in silicon chips using feedback chemical etching. Small, 3, 116–119.10.1002/(ISSN)1613-6829
  • Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V., & Drndić, M. (2015). DNA translocation in nanometer thick silicon nanopores. ACS Nano, 9, 6555–6564.10.1021/acsnano.5b02531
  • Smeets, R. M., Keyser, U. F., Krapf, D., Wu, M.-Y., Dekker, N. H., & Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6, 89–95.10.1021/nl052107w
  • Stein, D. M., McMullan, C. J., Li, J., & Golovchenko, J. A. (2004). Feedback-controlled ion beam sculpting apparatus. Review of Scientific Instruments, 75, 900–905.10.1063/1.1666986
  • Storm, A., Chen, J., Ling, X., Zandbergen, H., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2, 537–540.10.1038/nmat941
  • Vega, M., Lerner, B., Lasorsa, C. A., Pierpauli, K., & Perez, M. S. (2016). Automated and low cost method to manufacture addressable solid-state nanopores. Microsystem Technologies, 22, 109–117.10.1007/s00542-014-2399-x
  • Wanunu, M., Sutin, J., McNally, B., Chow, A., & Meller, A. (2008). DNA translocation governed by interactions with solid-state nanopores. Biophysical Journal, 95, 4716–4725.10.1529/biophysj.108.140475
  • Yanagi, I., Akahori, R., Hatano, T., & Takeda, K.-i. (2014). Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Scientific Reports, 4, 1–7.
  • Yu, J.-S., Lim, M.-C., Huynh, D. T. N., Kim, H.-J., Kim, H.-M., Kim, Y.-R., & Kim, K.-B. (2015). Identifying the location of a single protein along the DNA Strand Using Solid-State Nanopores. ACS Nano, 9, 5289–5298.10.1021/acsnano.5b00784
  • Yusko, E. C., Johnson, J. M., Majd, S., Prangkio, P., Rollings, R. C., LI, J., ... Mayer, M. (2011). Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotechnology, 6, 253–260.10.1038/nnano.2011.12
  • Zwolak, M., & Di Ventra, M. (2005). Electronic signature of DNA nucleotides via transverse transport. Nano Letters, 5, 421–424.10.1021/nl048289w