2,006
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Degradation and mineralization of moxifloxacin antibiotic in aqueous medium by electro-Fenton process: Kinetic assessment and oxidation products

, , , & | (Reviewing Editor)
Article: 1290021 | Received 28 Oct 2016, Accepted 29 Jan 2017, Published online: 22 Feb 2017

References

  • Abellán, M. N., Giménez, J., & Esplugas, S. (2009). Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catalysis Today, 144, 131–136.10.1016/j.cattod.2009.01.051
  • Boye, B., Dieng, M. M., & Brillas, E. (2002). Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environmental Science & Technology, 36, 3030–3035.
  • Brillas, E., Banos, M., & Garrido, J. (2003). Mineralization of herbicide 3,6-dichloro-2 methoxybenzoic acid in aqueous media by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochimica Acta, 48, 1697–1705.
  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. ACS, 109, 6570–6631.10.1021/cr900136g
  • De Bel, E., Dewulf, J., Witte, B., Van Langenhove, H., & Janssen, C. R. (2009). Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere, 77, 291–295.10.1016/j.chemosphere.2009.07.033
  • De Witte, B., Dewulf, J., Demeestere, K., & Van Langenhove, H. (2009). Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. Journal of Hazardous Materials, 161, 701–708.10.1016/j.jhazmat.2008.04.021
  • De Witte, B., van Langenhove, H., Demeestere, K., & Dewulf, J. (2011a). Critical reviews in environment. Science and Technology, 41, 215–242.
  • de Witte, B., van Langenhove, H., Demeestere, K., & Dewulf, J. (2011b). Advanced oxidation of pharmaceuticals: Chemical analysis and biological assessment of degradation products. Environmental Science and Technology, 41, 215–242.10.1080/10643380902728698
  • De Witte, B., Van Langenhove, H., Demeestere, K., Saerens, K., De Wispelaere, P., & Dewulf, J. (2010). Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and H2O2. Chemosphere, 78, 1142–1147.10.1016/j.chemosphere.2009.12.026
  • Dimitroula, H., Daskalaki, V. M., Frontistis, Z., Kondarides, D. I., Panagiotopoulou, P., Xekoukoulotakis, N. P., & Mantzavinos, D. (2012). Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: Synthesis, characterization and testing of various TiO2 samples. Applied Catalysis B: Environmental, 117-118, 283–291.10.1016/j.apcatb.2012.01.024
  • Dirany, A., Sirés, I., Oturan, N., & Oturan, M. A. (2010). Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81, 594–602.10.1016/j.chemosphere.2010.08.032
  • Doll, T. E., & Frimmel, F. H. (2004). Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials – determination of intermediates and reaction pathways. Water Research, 38, 955–964.10.1016/j.watres.2003.11.009
  • European Pharmacopoeia 8.0. (2014). Moxifloxacin hydrochloride. 2803.
  • Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399, 251–275.10.1007/s00216-010-4300-9
  • Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85, 693–709.10.1016/j.chemosphere.2011.06.082
  • Ferech, M., Coenen, S., Malhotra-Kumar, S., Dvorakova, K., Hendrickx, E., Suetens, C., & Goossens, H. (2006). European surveillance of AntDrugs 58, metabolism and excretion of moxifloxacinimicrobial consumption (ESAC): Outpatient quinolone use in Europe. Journal of Antimicrobial Chemotherapy, 58, 423–427.10.1093/jac/dkl183
  • Garcia-Segura, S., Centellas, F., Arias, C., Garrido, J. A., Rodríguez, R. M., & Cabot, P. L. (2011). Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 58, 303–311.10.1016/j.electacta.2011.09.049
  • Hapeshi, E., Achilleos, A., Vasquez, M. I., Michael, C., Xekoukoulotakis, N. P., Mantzavinos, D., & Kassinos, D. (2010). Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Research., 44, 1737–1746.10.1016/j.watres.2009.11.044
  • Heynderickx, P., Demeestere, K., Dewulf, J., De Witte, B., & Van Langenhove, H. (2011). Formal bimolecular kinetic model for the ozonation of ciprofloxacin in the liquid phase. Journal of Advanced Oxidation Technologies, 14, 71–80.
  • Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices – A review. Journal of Environmental Management, 92, 2304–2347.10.1016/j.jenvman.2011.05.023
  • Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. Journal of Environmental Management, 90, 2354–2366.10.1016/j.jenvman.2009.01.023
  • Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473.10.1021/es903490h
  • Michael, I., Hapeshi, E., Michael, C., & Fatta-Kassinos, D. (2010). Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: Evaluation of operational and kinetic parameters. Water Research, 44, 5450–5462.10.1016/j.watres.2010.06.053
  • Nasuhoglu, D., Rodayan, A., Berk, D., & Yargeau, V. (2012). Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chemical Engineering Journal, 189, 41–48.10.1016/j.cej.2012.02.016
  • Oturan, M. A. (2000). An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants. Application to herbicide 2,4-D. Journal of Applied Electrochemistry, 30, 477–482.
  • Oturan, M. A., Oturan, N., Lahitte, C., & Trevin, S. (2001). Production of hydroxyl radicals by electrochemically assisted Fenton’s reagenteapplication to the mineralization of an organic micropollutant, pentachlorophenol. Journal of Electroanalytical Chemistry, 507, 96–102.
  • Oturan, M. A., Peiroten, J., Chartrin, P., & Acher, A. J. (2000). Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environmental Science & Technology, 34, 3474–3479.10.1021/es990901b
  • Oturan, M. A., Pinson, J., Deprez, D., & Terlain, B. (1992). Polyhydroxylation of salicylic acid by electrochemically generated OH radicals. New Journal of Chemistry , 16, 705–710.
  • Oturan, N., Panizza, M., & Oturan, M. A. (2009). Cold incineration of chlorophenols in aqueous solution by electro-Fenton process. Effect of number and position of chlorine atoms on the degradation kinetics. The Journal of Physical Chemistry A, 113, 10988–10993.
  • Ozcan, A., Oturan, M. A., Oturan, N., & Ahin, Y. S. (2009). Removal of acid orange 7 from water by electrochemically generated Fenton’s reagent. Journal of Hazardous Materials, 163, 1213–1220.
  • Ozcan, A., Oturan, N., Ahin, Y. S., & Oturan, M. A. (2010). Electro-Fenton treatment of aqueous clopyralid solutions. International Journal of Environmental Analytical Chemistry, 90, 478–486.
  • Paul, T., Dodd, M. C., & Strathmann, T. J. (2010). Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity. Water Research, 44, 3121–3132.10.1016/j.watres.2010.03.002
  • Paul, T., Miller, P. L., & Strathmann, T. J. (2007). Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science & Technology, 41, 4720–4727.10.1021/es070097q
  • Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G. L., & Malato, S. (2012). Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 211-212, 131–137.10.1016/j.jhazmat.2011.09.008
  • Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E. M., & Malato, S. (2013). Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 47, 1521–1528.10.1016/j.watres.2012.11.002
  • Sirtori, C., Zapata, A., Gernjak, W., Malato, S., & Agüera, A. (2012). Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures. Chemosphere, 88, 627–634.10.1016/j.chemosphere.2012.03.047
  • Sousa, M. A., Gonçalves, C., Vilar, V. J. P., Boaventura, R. A. R., & Alpendurada, M. F. (2012). Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chemical Engineering Journal, 198-199, 301–309.10.1016/j.cej.2012.05.060
  • Speltini, A., Sturini, M., Maraschi, F., & Profumo, A. (2010). Fluoroquinolone antibiotics in environmental waters: Sample preparation and determination. Journal of Separation Science, 33, 1115–1131.
  • Stass, H. (1999). Metabolism and excretion of moxifloxacin. Drugs, 58, 231–232.
  • Sun, Y., & Pignatello, J. J. (1993). Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environmental Science & Technology, 27, 304–310.10.1021/es00039a010
  • Van Bambeke, F., Michot, J. M., Van Eldere, J., Tulkens, P. M. (2005). Quinolones in 2005: An update. Clinical Microbiology and Infection, 11, 256–280.10.1111/j.1469-0691.2005.01131.x
  • Van Doorslaer, X., Demeestere, K., Heynderickx, P. M., Caussyn, M., Van Langenhove, H., Devlieghere, F., … Dewulf, J. (2013). Heterogeneous photocatalysis of moxifloxacin: Identification of degradation products and determination of residual antibacterial activity. Applied Catalysis B: Environmental, 138-139, 333–341.10.1016/j.apcatb.2013.03.011
  • Van Doorslaer, X. V., Demeestere, K., Heynderickx, P. M., Caussyn, M., Van Langenhove, H., & Devlieghere, F. (2013). Heterogeneous photocatalysis of moxifloxacin: Identification of degradation products and determination of residual antibacterial activity. Applied Catalysis B: Environmental, 138-139, 333–341.10.1016/j.apcatb.2013.03.011
  • Vasconcelos, T. G., Kümmerer, K., Henriques, D. M., & Martins, A. F. (2009). Ciprofloxacin in hospital effluent: Degradation by ozone and photoprocesses. Journal of Hazardous Materials, 169, 1154–1158.10.1016/j.jhazmat.2009.03.143
  • Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 41, 4164–4176.10.1016/j.watres.2007.04.005
  • Wu, Z. C., Zhou, M. H., & Wang, D. H. (2002). Synergetic effects of anodic–cathodic electrocatalysis for phenol degradation in the presence of iron(II). Chemosphere, 48, 1089–1096.10.1016/S0045-6535(02)00137-6
  • Yahya, M. sh., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: Kinetics and oxidation products. Chemosphere, 117, 447–454.10.1016/j.chemosphere.2014.08.016
  • Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145, 227–232.10.1016/j.jhazmat.2006.11.016
  • Zhou, M. H., Tan, Q. Q., Wang, Q., Jiao, Y. L., Oturan, N., & Oturan, M. A. (2012). Degradation of organics in reverse osmosis concentrate by electro-Fenton process. Journal of Hazardous Materials, 215-216, 287–293.10.1016/j.jhazmat.2012.02.070