738
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Collagen-immobilized polyimide membranes for retinal pigment epithelial cell adherence and proliferation

, , , , , & | (Reviewing Editor) show all
Article: 1292593 | Received 26 Oct 2016, Accepted 03 Feb 2017, Published online: 06 Mar 2017

References

  • Ambati, J., Atkinson, J. P., & Gelfand, B. D. (2013). Immunology of age-related macular degeneration. Nature Reviews Immunology, 13, 438–451. doi:10.1038/nri3459
  • Bhusari, D., Hayden, H., Tanikella, R., Allen, S. A. B., & Kohl, P. A. (2005). Plasma treatment and surface analysis of polyimide films for electroless copper buildup process. Journal of The Electrochemical Society, 152, F162–F170. doi:10.1149/1.2006587
  • Bhutto, I., & Lutty, G. (2012). Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Molecular Aspects of Medicine, 33, 295–317. doi:10.1016/j.mam.2012.04.005
  • Binder, S., Krebs, I., Hilgers, R.-D., Abri, A., Stolba, U., Assadoulina, A., ... Feichtinger, H. (2004). Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: A prospective trial. Investigative Opthalmology & Visual Science, 45, 4151–4160. doi:10.1167/iovs.04-0118
  • Bull, N. D., & Martin, K. R. (2011). Concise review: Toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells, 29, 1170–1175. doi:10.1002/stem.676
  • Burke, J. M. (2008). Epithelial phenotype and the RPE: Is the answer blowing in the Wnt? Progress in Retinal and Eye Research, 27, 579–595. doi:10.1016/j.preteyeres.2008.08.002
  • Cheng, Z., & Teoh, S.-H. (2004). Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials, 25, 1991–2001. doi:10.1016/j.biomaterials.2003.08.038
  • Custódio, C. A., Alves, C. M., Reis, R. L., & Mano, J. F. (2010). Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 4, 316–323. doi:10.1002/term.248
  • Diniz, B., Thomas, P., Thomas, B., Ribeiro, R., Hu, Y., Brant, R., ... Humayun, M. S. (2013). Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: Improved survival when implanted as a monolayer. Investigative Opthalmology & Visual Science, 54, 5087–5096. doi:10.1167/iovs.12-11239
  • Gupta, B., Hilborn, J. G., Bisson, I., & Frey, P. (2001). Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films. Journal of Applied Polymer Science, 81, 2993–3001. doi:10.1002/app.1749
  • Gupta, B., Plummer, C., Bisson, I., Frey, P., & Hilborn, J. (2002). Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials, 23, 863–871. doi:10.1016/S0142-9612(01)00195-8
  • Gupta, B., Srivastava, A., Grover, N., & Saxena, S. (2010). Plasma induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) monofilament. Indian Journal of Fibre & Textile Research, 35, 9–14.
  • Hornof, M., Toropainen, E., & Urtti, A. (2005). Cell culture models of the ocular barriers. European Journal of Pharmaceutics and Biopharmaceutics, 60, 207–225. doi:10.1016/j.ejpb.2005.01.009
  • Huang, Y., Enzmann, V., & Ildstad, S. T. (2011). Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Reviews and Reports, 7, 434–445. doi:10.1007/s12015-010-9192-8
  • Inagaki, N. (2006). Polymer films produced by plasma polymerization. In Y. Pauleau (Ed.), Materials surface processing by directed energy techniques (Vol. 20, pp. 659–707). Oxford: Elsevier.
  • Julien, S., Peters, T., Ziemssen, F., Arango-Gonzalez, B., Beck, S., Thielecke, H., ... Schraermeyer, U. (2011). Implantation of ultrathin, biofunctionalized polyimide membranes into the subretinal space of rats. Biomaterials, 32, 3890–3898. doi:10.1016/j.biomaterials.2011.02.016
  • Kaarniranta, K., Sinha, D., Blasiak, J., Kauppinen, A., Veréb, Z., Salminen, A., ... Petrovski, G. (2013). Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy, 9, 973–984.10.4161/auto.24546
  • Sachs, H. G., Schanze, T., Wilms, M., Rentzos, A., Brunner, U., Gekeler, F., & Hesse, L. (2004). Subretinal implantation and testing of polyimide film electrodes in cats. Graefe’s Archive for Clinical and Experimental Ophthalmology, 243, 464–468. doi:10.1007/s00417-004-1049-x
  • Sam, S., Touahir, L., Salvador Andresa, J., Allongue, P., Chazalviel, J.-N., Gouget-Laemmel, A. C., ... Djebbar, S. (2010). Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir, 26, 809–814. doi:10.1021/la902220a
  • Shadforth, A. M. A., George, K. A., Kwan, A. S., Chirila, T. V., & Harkin, D. G. (2012). The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin. Biomaterials, 33, 4110–4117. doi:10.1016/j.biomaterials.2012.02.040
  • Skottman, H. (2012). Differentiation of human embryonic stem cells and human induced pluripotent stem cells into retinal pigment epithelium. In M. A. Hayat (Ed.), Stem cells and cancer stem cells (Vol. 7, pp. 187–194). Netherlands: Springer.
  • Sorkio, A., Hongisto, H., Kaarniranta, K., Uusitalo, H., Juuti-Uusitalo, K., & Skottman, H. (2014). Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Engineering. Part A, 20, 622–634. doi:10.1089/ten.TEA.2013.0049
  • Subrizi, A., Hiidenmaa, H., Ilmarinen, T., Nymark, S., Dubruel, P., Uusitalo, H., ... Skottman, H. (2012). Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes. Biomaterials, 33, 8047–8054. doi:10.1016/j.biomaterials.2012.07.033
  • Tezcaner, A., Bugra, K., & Hasırcı, V. (2003). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials, 24, 4573–4583. doi:10.1016/S0142-9612(03)00302-8
  • Van Vlierberghe, S., Sirova, M., Rossmann, P., Thielecke, H., Boterberg, V., Rihova, B., ... Dubruel, P. (2010). Surface modification of polyimide sheets for regenerative medicine applications. Biomacromolecules, 11, 2731–2739. doi:10.1021/bm100783 h
  • Warnke, P. H., Alamein, M., Skabo, S., Stephens, S., Bourke, R., Heiner, P., & Liu, Q. (2013). Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomaterialia, 9, 9414–9422. doi:10.1016/j.actbio.2013.07.029
  • Xue, P., Bao, J., Chuah, Y. J., Menon, N. V., Zhang, Y., & Kang, Y. (2014). Protein covalently conjugated su-8 surface for the enhancement of mesenchymal stem cell adhesion and proliferation. Langmuir, 30, 3110–3117. doi:10.1021/la500048z
  • Ying, L., Yin, C., Zhuo, R. X., Leong, K. W., Mao, H. Q., Kang, E. T., & Neoh, K. G. (2003). Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture. Biomacromolecules, 4, 157–165. doi:10.1021/bm025676w
  • Yu, Z. J., Kang, E. T., & Neoh, K. G. (2002). Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers. Polymer, 43, 4137–4146. doi:10.1016/S0032-3861(02)00263-X
  • Zhang, C., Thompson, M. E., Markland, F. S., & Swenson, S. (2011). Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Acta Biomaterialia, 7, 3746–3756. doi:10.1016/j.actbio.2011.06.003
  • Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.-P., ... Wilke, R. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings of the Royal Society B: Biological Sciences, 278, 1489–1497. doi:10.1098/rspb.2010.1747