686
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mechanism sorption of carbon dioxide onto dam silt

ORCID Icon, & | (Reviewing Editor)
Article: 1300974 | Received 01 Nov 2016, Accepted 26 Feb 2017, Published online: 14 Mar 2017

References

  • Azzouz, A., Assaad, E., Ursu, A. V., Sajin, T., Nistor, D., & Roy, R. (2010). Carbon dioxide retention over montmorillonite-dendrimer materials. Applied Clay Science, 48, 133–137.10.1016/j.clay.2009.11.021
  • Balsamo, M., Di Natale, F., Erto, A., Lancia, A., Montagnaro, F., & Santoro, L. (2011). Cadmium adsorption by coal combustion ashes-based sorbents—Relationship between sorbent properties and adsorption capacity. Journal of Hazardous Materials, 187, 371–378.10.1016/j.jhazmat.2011.01.029
  • Behvandi, A., & Taurani, S. (2011). Equilibrium modeling of carbon dioxide adsorption zeolites. World Academy of Science, Engineering and Technology, 52, 617–619.
  • Belin, T., Mve Mfoumou, C., Mignard, S., & Pouilloux, Y. (2013). Study of physisorbed carbon dioxide on zeolites modified by addition of oxides or acetate impregnation. Microporous and Mesoporous Materials, 182, 109–116.10.1016/j.micromeso.2013.08.020
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study. Chemical Engineering Journal, 136, 1–13.10.1016/j.cej.2007.03.005
  • Bhowmik, S., & Dutta, P. (2013). Adsorption rate characteristics of methane and CO2 in coal samples from Raniganj and Jharia coal fields of India. International Journal of Coal Geology, 113, 50–59.10.1016/j.coal.2013.02.005
  • Blamey, J., Al-Jeboori, M. J., Manovic, V., Fennell, P. S., & Anthony, E. J. (2016). CO2 capture by calcium aluminate pellets fluidized bed. Fuel Processing Technology, 142, 100–106.10.1016/j.fuproc.2015.09.015
  • Chalal, N., Bouhali, H., Hamaizi, H., Lebeau, B., & Bengueddach, A. (2015). CO2 sorption onto silica mesoporous materials made from nonionic surfactants. Microporous and Mesoporous Materials, 210, 32–38.10.1016/j.micromeso.2015.02.016
  • Charrière, D. (2009). Characterization of gas sorption on coals, Application to the geological storage of carbon dioxide into coal seams (PhD thesis). University of Toulouse, Toulouse.
  • Clarkson, C. R., & Bustin, R. M. (1999). The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study, 2. Adsorption rate modeling. Fuel, 78, 1345–1362.
  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press.
  • Cui, X., Bustin, R. M., & Dipple, G. (2004). Selective transport of CO2, CH4 and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel, 83, 293–303.10.1016/j.fuel.2003.09.001
  • De Boer, J. H. (1953). The dynamical character of adsorption. London: Oxford University Press.
  • Deboer, J. H., Linsen, B. G., & Osinga, T. J. (1965). Studies on pore systems in catalysts: VI. The universal t curve. Journal of Catalysis, 4, 643–648.10.1016/0021-9517(65)90263-0
  • Dubinin, M. M., & Radushkevich, L. V. (1947). Sorption and structure of active carbons, I. Adsorption of organics vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
  • Dutta, P., Harpalani, S., & Prusty, B. (2008). Modeling of CO2 sorption on coal. Fuel, 87, 2023–2036.10.1016/j.fuel.2007.12.015
  • Emmett, P. H., & Brunauer, S. (1937). The use of low temperature van der Waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts. Journal of the American Chemical Society, 59, 1553–1564.10.1021/ja01287a041
  • Figueroa, J., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. (2008). Advances in CO2 capture technology – The U.S Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2, 9–20.10.1016/S1750-5836(07)00094-1
  • Freundlich, H. (1926). Colloid and capillary chemistry. London: Methuen.
  • Gallucci, K., Stendardo, S., & Foscolo, P. U. (2008). CO2 capture by means of dolomite in hydrogen production from syngas. International Journal of Hydrogen Energy, 33, 3049–3055.10.1016/j.ijhydene.2008.03.039
  • Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., & Wang, Y. (2013). Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH. Chemical Engineering Journal, 232, 582–590.
  • Ghezini, R., Sassi, M., & Bengueddach, A. (2008). Adsorption of carbon dioxide at high pressure over H-ZSM- type zeolite. Micropore volume determinations by using the Dubinin-Raduskevich equation and the ‘‘t-plot” method. Microporous and Mesoporous Materials, 113, 370–377.10.1016/j.micromeso.2007.11.034
  • Guillot, A., & Stoeckli, F. (2001). Reference isotherm for high pressure adsorption of CO2 by carbons at 273 K. Carbon, 39, 2059–2064.10.1016/S0008-6223(01)00022-7
  • Hao, W., Björkman, E., Lilliestråle, M., & Hedin, N. (2013). Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Applied Energy, 112, 526–532.10.1016/j.apenergy.2013.02.028
  • Hefti, M., Marx, D., Joss, L., & Mazzotti, M. (2015). Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Materials, 215, 215–228. doi:10.1016/j.micromeso.2015.05.044
  • Hill, T. L. (1946). Localized and mobile adsorption and absorption. Journal of Chemical Physics, 14, 1441.
  • Hong, W. Y., Perera, S. P., & Burrows, A. D. (2015). Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Microporous and Mesoporous Materials, 214, 149–155.10.1016/j.micromeso.2015.05.014
  • House, W. A., & Jaycock, M. J. (1974). A study of the surface heterogeneity of an anatase sample. Journal of Colloid Interface Science, 47, 50–58.10.1016/0021-9797(74)90078-2
  • IUPAC Commission on Colloid and Surface Chemistry. (1994). Pure Applied Chemistry, 66, 1739.
  • Keramati, M., & Ghoreyshi, A. A. (2014). Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E: Low-Dimensional Systems and Nanostructures, 57, 161–168. doi:10.1016/j.physe.2013.10.024
  • Khelifa, A., Benchehida, L., & Derriche, Z. (2004). Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: Isotherms and isosteric heat. Journal of Colloid and Interface Science, 278, 9–17.10.1016/j.jcis.2004.05.033
  • Khelifa, A., Derriche, Z., & Bengueddach, A. (1999). Sorption of carbon dioxide by zeolite X exchanged with Zn2+ and Cu2+. Microporous and Mesoporous Materials, 32, 199–209.10.1016/S1387-1811(99)00107-9
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.10.1021/ja02242a004
  • Li, F., & Fan, L. (2008). Clean coal conversion processes—Progress and challenges. Energy Environmental Science, 1, 248–267.10.1039/b809218b
  • Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2004). Characterization of porous solids and powders: Surface area, pore size and density (p. 16). Netherlands: Springer.10.1007/978-1-4020-2303-3
  • Marsh, H., & Siemieniewska, T. (1965). The surface area of coals as evaluated from the adsorption isotherms of carbon dioxide using Dubinin-Polanyi equation. Fuel, 44, 355–367.
  • Metz, B., Davidson, O., Coninck, H., Loos, M., & Meyer, L. (2005). Carbon dioxide capture and storage. Cambridge: University Press.
  • Montagnaro, F., Silvestre-Albero, A. S., Silvestre-Albero, J. S., Rodríguez-Reinoso, F. R., Erto, A., Lancia, A., & Balsamo, M. (2015). Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous and Mesoporous Materials, 209, 157–164.10.1016/j.micromeso.2014.09.037
  • Nandi, S., & Walker, P. (1970). Activated diffusion of methane in coal. Fuel, 49, 309–323.10.1016/0016-2361(70)90023-2
  • Ouadjenia-Marouf, F., Marouf, R., Schott, J., & Yahiaoui, A. (2013). Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. Arabian Journal of Chemistry, 6, 401–406.10.1016/j.arabjc.2010.10.018
  • Pickering, H. L., & Eckstrom, H. C. (1952). Physical adsorption of gases on anatase. Journal of the American Chemical Society, 74, 4775–4777.10.1021/ja01139a014
  • Pillai, R. S., Peter, S. A., & Jasra, R. V. (2008). Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous and Mesoporous Materials, 113, 268–276.10.1016/j.micromeso.2007.11.042
  • Pires, J., Bestilleiro, M., Pinto, M., & Gil, A. (2008). Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Separation Purification Technology, 61, 161–167.10.1016/j.seppur.2007.10.007
  • Polanyi, M. (1914). Adsorption and capillarity from standpoint of 2nd law of thermodynamics. Verhandt. Deut. Phys. Ges., 16, 1012.
  • Raznjevic, K. (1970). Thermodynamic tables and diagrams (p. 558). Paris: Eyrolles.
  • Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. New York, NY: Wiley Interscience.
  • Samanta, A., Zhao, A., Shimizu, G., Sarkar, P., & Gupta, R. (2012). Post-combustion CO2 capture using solid sorbents: A review. Industrial & Engineering Chemistry Research, 51, 1438–1463.10.1021/ie200686q
  • Sari, A., Tuzen, M., Citak, D., & Soylak, M. (2007). Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 149, 283–291.10.1016/j.jhazmat.2007.03.078
  • Sayari, A., Belmabkhout, Y., & Serna-Guerrero, R. (2011). Flue gas treatment via CO2 adsorption. Chemical Engineering Journal, 171, 760–774.10.1016/j.cej.2011.02.007
  • Sevilla, M., Falco, C., Titirici, M. M., & Fuertesa, A. (2012). High-performance CO2 sorbents from algae. Royal Society of Chemistry Advances, 2, 12792–12797.
  • Sevilla, M., & Fuertes, A. B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 4, 1765–1771.10.1039/c0ee00784f
  • Sharma, Y. C. (2008). Thermodynamics of removal of cadmium by adsorption on an indigenous clay. Chemical Engineering Journal, 145, 64–68.10.1016/j.cej.2008.03.006
  • Shieh, J. J., & Chung, T. S. (1999). Gas permeability, diffusivity, and solubility of poly(4- vinylpyridine) film. Journal of Polymer Science Part B: Polymer Physics, 37, 2851–2861.10.1002/(ISSN)1099-0488
  • Siemons, N., Wolf, K.-H. A.A., & Bruining, J. (2007). Interpretation of carbon dioxide diffusion behavior in coals. International Journal of Coal Geology, 72, 315–324.10.1016/j.coal.2007.04.004
  • Sigg, L., Behra, P., & Stumm, W. (2006). Chemistry of aquatic environments (4th ed.). Paris: Dunod.
  • Sing, K. S. W. (1973). Colloid science 1. London: The Chemical Society.
  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16, 490–495.10.1063/1.1746922
  • Siriwardane, R. V., Shen, M. S., & Fisher, E. P. (2003). Adsorption of CO2, N2 and O2 on natural zeolites. Energy & Fuels, 17, 571–576.10.1021/ef020135l
  • Smith, D. M., & Williams, F. L. (1984). Diffusion models for gas production from coal. Fuel, 63, 256–261.10.1016/0016-2361(84)90047-4
  • Song, C. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115, 2–32.10.1016/j.cattod.2006.02.029
  • Tamajón, F. J., Álvarez, E., Cerdeira, F., & Gómez-Díaz, D. (2016). CO2 absorption into N-methyldiethanolamine aqueous-organic solvents. Chemical Engineering Journal, 283, 1069–1080.10.1016/j.cej.2015.08.065
  • Vilarrasa-Garcia, E., Moya, E. M., Cecilia, J. A., Cavalcante Jr., C. L., Jiménez- Jiménez, J., & Azevedo, D. C. ssS. (2015). CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microporous and Mesoporous Materials, 209, 172–183.10.1016/j.micromeso.2014.08.032
  • Vyas, R. K., & Kumar, S. S. (2004). Determination of micropore volume and surface area of zeolite molecular sieves by DR and DA equation: A comparative study. Indian Journal of Chemical Technology, 11, 704–709.
  • Wang, M., Joel, A. S., Ramshaw, C., Eimer, D., & Musa, N. M. (2015). Process intensification for post-combustion CO2 capture with chemical absorption: A critical review. Applied Energy, 158, 275–291.10.1016/j.apenergy.2015.08.083
  • Wang, Y., Zhou, Y., Liu, C., & Zhou, L. (2008). Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322, 14–18.10.1016/j.colsurfa.2008.02.014
  • Xu, G., Li, L., Yang, Y., Tian, L., Liu, T., & Zhang, K. (2012). A novel CO2 cryogenic liquefaction and separation system. Energy, 42, 522–529.10.1016/j.energy.2012.02.048
  • Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14–27.10.1016/S1001-0742(08)60002-9
  • Yan, S. P., Fang, M. X., Zhang, W. F., Zhong, W. L., Luo, Z. Y., & Cen, K. F. (2008). Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 49, 3188–3197.10.1016/j.enconman.2008.05.027
  • Yue, M. B., Sun, L. B., Cao, Y., & Wang, Z. J. (2008). Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous and Mesoporous. Materials, 114, 74–81.10.1016/j.micromeso.2007.12.016