2,156
Views
22
CrossRef citations to date
0
Altmetric
Research Article

An investigation on the synthesis and catalytic activities of pure and Cu-doped zinc oxide nanoparticles

, & ORCID Icon | (Reviewing Editor)
Article: 1301241 | Received 26 Oct 2016, Accepted 27 Feb 2017, Published online: 16 May 2017

References

  • Anna, M. R. G., Claudia, A., Mirko, M., Fabio, P., & Bernardo, T. (2013). Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Applied Surface Science, 280, 610–618.
  • Aziz, M. C., Zahoor, A., Aysha, H., Khan, Y., & Aslam, M. (2016). Synthesis and characterization of ZnO/CuO nanocompsites on porous 3D Ni substrate and its photoelectric behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46, 1618–1621.
  • Banu Bahşi, Z., & Oral, A. (2007). Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Optical Materials, 29, 672–678.10.1016/j.optmat.2005.11.016
  • Carolin, S., Manfred, Z., Christian, M., & Markus, W. (2014). Aluminum-doped ZnO nanoparticles: Gas-phase synthesis and dopant location. Journal of Nanoparticle Research, 16, 2506. 15 pp.
  • Chen, Y., & Xu, X. (2011). Effect of oxygen deficiency on optical band gap shift in Er doped ZnO thin films. Physica B: Condensed Matter, 406, 3121–3124.10.1016/j.physb.2011.03.078
  • Diouri, J., Lascaray, J., & El Amrani, M. (1985). Effect of the magnetic order on the optical-absorption edge in Cd1-x MnxTe. Physical Review B, 31, 7995.10.1103/PhysRevB.31.7995
  • Elilarassi, R., & Chandrasekaran, G. (2010). Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. Journal of Materials Science: Materials in Electronics, 21, 1168–1173.
  • Fernandes, D., Silva, R., Winkler Hechenleitner, A., Radovanovic, E., Custydio Melo, M., & Pineda, E. (2009). Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Materials Chemistry and Physics, 115, 110–115.10.1016/j.matchemphys.2008.11.038
  • Jang, Y. J., Simer, C., & Ohm, T. (2006). Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Materials Research Bulletin, 41, 67–77.10.1016/j.materresbull.2005.07.038
  • Kanade, K., Kale, B., Baeg, J. O., Lee, S. M., Lee, C. W., Moon, S. J., & Chang, H. (2007). Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Materials Chemistry and Physics, 102, 98–104.10.1016/j.matchemphys.2006.11.012
  • Kaur, J., Bansal, S., & Singhal, S. (2013). Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B: Condensed Matter, 416, 33–38.10.1016/j.physb.2013.02.005
  • Kumar, R., Kumar, G., & Umar, A. (2013). ZnO nano- mushrooms for photocatalytic degradation of methyl orange. Materials Letters, 97, 100–103.10.1016/j.matlet.2013.01.044
  • Li, X., Li, H., Yuan, M., Wang, Z., Zhou, Z. Y., & Xu, R. (2011). Influence of oxygen partial pressure on electrical and optical properties of Zn0.93Mn0.07O thin films. Journal of Alloys and Compounds, 509, 3025–3031.10.1016/j.jallcom.2010.11.191
  • Liao, D. L., Badour, C. A., & Liao, B. Q. (2008). Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 194, 11–19.10.1016/j.jphotochem.2007.07.008
  • Lin, G., & Shihe, Y. (2000). Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chemistry of Materials, 12, 2268–2274.
  • Liu, Z., Deng, J., Deng, J., & Li, F. (2008). Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method. Materials Science and Engineering B, 150, 99–104.10.1016/j.mseb.2008.04.002
  • Lutic, D., Coromelci-Pastravanu, C., Cretescu, I., Poulios, I., & Stan, C. D. (2012). Photocatalytic treatment of Rhodamine 6G in wastewater using photoactive ZnO. International Journal of Photoenergy, 2012, Article ID: 475131.
  • Manoj, P., & Zahira, Y. (2014). Facile solid state synthesis of ZnO hexagonal nanogranules with excellent photocatalytic activity. Applied Surface Science, 292, 520–530.
  • Manoj, P., & Zahira, Y. (2015). Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. Journal of Cluster Science, 26, 1187–1201.
  • Muthukumaran, S., & Gopalakrishnan, R. (2012). Structural FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials, 34, 1946–1953.10.1016/j.optmat.2012.06.004
  • Oh, S. W., Kang, M. N., Cho, C. W., & Lee, M. W. (1997). Detection of carcinogenic amines from dye stuffs or dyed substrates. Dyes Pigments, 33, 119–135.10.1016/S0143-7208(96)00038-1
  • Reddy, A. J., Kokila, M., Nagabhushana, H., Chakradhar, R., Shivakumara, C., Rao, J., & Nagabhushana, B. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of Alloys and Compounds, 509, 5349–5355.10.1016/j.jallcom.2011.02.043
  • Rekha, K., Nirmala, M., Nair, M., & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: Condensed Matter, 405, 3180–3185.10.1016/j.physb.2010.04.042
  • Santi, M., Paveena, L., & Vinich, P. (2006). Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone). Journal of Crystal Growth, 289, 102–106.
  • Sharma, P., Gupta, A., Rao, K., Owens, F. J., Sharma, R., Ahuja, R., … Gehring, G. (2003). Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Materials, 2, 673–677.10.1038/nmat984
  • Tian, C. G., Zhang, Q., Wu, A. P., Jiang, M. J., Liang, Z. L., Jiang, B. J., & Fu, H. J. (2012). Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications, 48, 2858–2860.10.1039/c2cc16434e
  • Ullah, R., & Dutta, J. (2008). Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156, 194–200.10.1016/j.jhazmat.2007.12.033
  • Viswanatha, R., Chakraborty, S., Basu, S., & Sarma, D. (2006). Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B, 110, 22310–22312.10.1021/jp065384f
  • Viswanatha, R., Sapra, S., Satpati, B., Satyam, P., Dev, B., & Sarma, D. (2004). Understanding the quantum size effects in ZnO nanocrystals. Journal of Materials Chemistry, 14, 661–668.10.1039/b310404d
  • William, C. S. (1992). Thermodynamics, statistical thermodynamics, and computer simulation of crystals with vacancies and interstitials. Physical Review A, 46, 4539–4548.
  • Xu, C., Cao, L., Su, G., Liu, W., Liu, H., Yu, Y., & Qu, X. (2010). Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. Journal of Hazardous Materials, 176, 807–813.10.1016/j.jhazmat.2009.11.106
  • Yu, J., & Yu, X. (2008). Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environmental Science & Technology, 42, 4902–4907.10.1021/es800036n
  • Zhang, H., Feng, J., & Zhang, M. (2008). Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Materials Research Bulletin, 43, 3221–3226.10.1016/j.materresbull.2008.03.003
  • Zhang, R., & Kerr, L. L. (2007). A simple method for systematically controlling ZnO crystal size and growth orientation. Journal of Solid State Chemistry, 180, 988–994.
  • Zhang, W., Yang, Z., Wang, X., Zhang, Y., Wen, X., & Yang, S. (2006). Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications, 7, 408–412.10.1016/j.catcom.2005.12.008