882
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In vivo acute toxicity assessment of a novel quinoxalinone (6-nitro-2 (1H)-quinoxalinone) in Wistar rats

, , , , ORCID Icon, , & | (Reviewing Editor) show all
Article: 1301242 | Received 12 Jan 2017, Accepted 27 Feb 2017, Published online: 20 Mar 2017

References

  • Antoniotti, S., & Duñach, E. (2002). Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diaminess. Tetrahedron Letters, 43, 3971–3973.10.1016/S0040-4039(02)00715-3
  • Aparicio, D., Attanasi, O. A., Filippone, P., Ignacio, R., Lillini, S., Mantellini, F., … de los Santos, J. M. (2006). Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. The Journal of Organic Chemistry, 71, 5897–5905.10.1021/jo060450v
  • Brown, D. J., Taylor, E. C., & Ellman, J. A. (2004). The chemistry of heterocyclic compounds. Hoboken, NJ: Wiley.
  • Canadian Council on Animal Care (1993). Manual on the care and use of experimental animals. Ottawa, 1993, 232–256.
  • Carta, A., Paglietti, G., Nikookar, M. E. R., Sanna, P., Sechi, L., & Zanetti, S. (2002). Novel substituted quinoxaline 1, 4-dioxides with in vitro antimycobacterial and anticandida activity, European Journal of Medicinal Chemistry, 37, 355–366.10.1016/S0223-5234(02)01346-6
  • Chang, D. W., Ko, S. J., Kim, J. Y., Dai, L., & Baek, J. B. (2012). Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals, 162, 1169–1176.
  • Chesseman, G. W. H., & Cookson, R. F. (1979). The chemistry of heterocyclic compounds, condensed pyrazines (vol. 35). Hoboken, NJ: John Wiley & Sons, Inc.10.1002/SERIES1079
  • Claude, A. (1988). Toxicological investigations for a new drug. In J. Giroud, G. Mathé, & G. Meyniel (Coordinators). Clinical pharmacology/therapeutic basics (2nd ed., pp. 3–14). Paris: French Scientific Expansion.
  • Deepika, Y., Surendra, P., Sachin, N. K., & Shewta, S. (2011). Biological activity of quinoxaline derivatives. International Journal of Current Pharmaceutical Review and Research, 1, 33–46.
  • El Adnani, Z., Mcharfi, M., Sfaira, M., Benjelloun, A. T., Benzakour, M., Ebn Touhami, M., Hammouti, B., & Taleb, M. (2012). Investigation of newly pyridazine derivatives as corrosion inhibitors in molar hydrochloric acid. Part III: Computational calculations. International Journal of Electrochemical Science, 7, 3982–3996.
  • Hassan, S. Y., Khattab, S. N., Bekhit, A. A., & Amer, A. (2006). Synthesis of 3-benzyl-2-substituted quinoxalines as novel monoamine oxidase A inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 1753–1756.10.1016/j.bmcl.2005.11.088
  • Hong, Y. S., Kim, H. M., Park, Y. T., & Kim, H. S. (2000). Heterocyclic compounds with sulfone functional groups (II): Synthesis of 1-arenesulfonyl-2-quinoxalinones. Bulletin of the Korean Chemical Society, 21, 133–136.
  • Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C. H., & Tao, Y. T. (2005). Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chemistry of Materials, 17, 1860–1866.
  • Kabanda, M. M., & Ebenso, E. E. (2012). Density functional theory and quantitative structure-activity relationship studies of some quinoxaline derivatives as potential corrosion inhibitors for copper in acidic medium. International Journal of Electrochemical Science, 7, 20.
  • Kew, M. C. (2000). Serum aminotransferase concentration as evidence of hepatocellular damage. The Lancet, 355, 591–592.10.1016/S0140-6736(99)00219-6
  • Kulkarni, N. V., Revankar, V. K., Kirasur, B. N., & Hugar, M. H. (2012). Transition metal complexes of thiosemicarbazones with quinoxaline hub: An emphasis on antidiabetic property. Medicinal Chemistry Research, 21, 8.
  • Kunkuma, V., Bethala, L. A. P. D., Bhongiri, Y., Rachapudi, B. N. P., & Potharaju, S. S. P. (2011). An efficient synthesis of quinoxalines catalyzed by monoammonium salt of 12-tungstophosphoric acid. European Journal of Chemistry, 2, 495–498.10.5155/eurjchem.2.4.495-498.413
  • Löscher, W., & Hönack, D. (1994). Effects of the non-NMDA antagonists NBQX and the 2,3-benzodiazepine GYKI 52466 on different seizure types in mice: Comparison with diazepam and interactions with flumazenil. British Journal of Pharmacology, 113, 1349–1357.10.1111/bph.1994.113.issue-4
  • Mahesh, R., Devadoss, T., Pandey, D. K., Bhatt, S., & Yadav, S. K. (2010). Design, synthesis and structure–activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression. Bioorganic & Medicinal Chemistry Letters, 20, 6773–6776.10.1016/j.bmcl.2010.08.128
  • Nakache, R., El Faydy, M., Berkiks, I., Ouichou, A., El Hessni, A., Lakhrissi, B., Benazzouz, B., & Mesfioui, A. (2015). Anti-anxiety- and antidepressant-like effects of the combination of 6-nitro-2(1h)-quinoxalinone and 2(1h)-quinoxalinone in wistar rats. World Journal of Pharmaceutical Research, 4, 281–295.
  • Nakache, R., Lakhrissi, B., Mrabet, F. Z., Elhessni, A., Ouichou, A., Benazzouz, B., & Mesfioui, A. (2012). Synthesis and influence of two quinoxalinone derivatives on anxiety- and depressive-like responses in Wistar Rat. Neuroscience & Medicine, 3, 330–336. doi:10.4236/nm.2012.34039
  • Nordholm, L., Sheardown, M., & Honoré, T. (1997). Clinical results with antagonists. In P. L. Herrling (Ed.), Excitatory amino acids (pp. 89–97). London: Academic Press.10.1016/B978-012546820-6/50010-4
  • OCDE. (2000). Guidance document on the recognition, assessment and use of clinical signs as humane endpoints for experimental animals used in safety evaluation (No. 19). Environmental Health and Safety Monograph Series on Testing and Assessment.
  • OCDE. (2001). Guidance document on acute oral toxicity (No. 24). Environmental Health and Safety Monograph Series on testing and assessment.
  • Olayiwola, G., Obafemi, C. A., & Taiwo, F. O. (2007). Synthesis and neuropharmacological activity of some quinoxalinone derivatives. African Journal of Biotechnology, 6, 777–786.
  • Sarges, R., Howard, H. R., Browne, R. G., Lebel, L. A., Seymour, P. A., & Koe, B. K. (1990). 4 Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. Journal of Medicinal Chemistry, 33, 2240–2254.10.1021/jm00170a031
  • Sharma, G., Raisinghani, P., Abraham, I., Pardasani, R. T., & Mukherjee, T. (2009). Synthesis of quinoxaline quinones and regioselectivity in their Diels-Alder cycloadditions. Indian Journal of Chemistry, 48B, 1590–1596.
  • Shi, D. Q., Dou, G. L., Ni, S. N., Shi, J. W., & Li, X. Y. (2008). An efficient synthesis of quinoxaline derivatives mediated by stannous chloride. Journal of Heterocyclic Chemistry, 45, 1797–1801.10.1002/jhet.v45:6
  • Sirwal, I. A., Banday, K. A., Reshi, A. R., Bhat, M. A., & Wani, M. M. (2004). Estimation of Glomerular Filteration Rate (GFR). JK Science, 6, 121–123.
  • Varano, F., Catarzi, D., Colotta, V., Cecchi, L., Filacchioni, G., Galli, A., & Costagli, C. (2001). Synthesis of a set of ethyl 1-carbamoyl-3-oxoquinoxaline-2-carboxylates and of their constrained analogue imidazo[1,5-a]quinoxaline-1,3,4-triones as glycine/NMDA receptor antagonists. European Journal of Medicinal Chemistry, 36, 203–209.10.1016/S0223-5234(00)01203-4