2,637
Views
31
CrossRef citations to date
0
Altmetric
Review Article

The physiological role of the brain GLP-1 system in stress

& ORCID Icon | (Reviewing Editor)
Article: 1229086 | Received 01 Aug 2016, Accepted 23 Aug 2016, Published online: 14 Sep 2016

References

  • Anesten, F., Holt, M. K., Schéle, E., Pálsdóttir, V., Reimann, F., Gribble, F. M., … Jansson, J. O. (2016). Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca 2+ influx in response to IL-6. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 311, R115–R123.10.1152/ajpregu.00383.2015
  • Barrera, J. G., Jones, K. R., Herman, J. P., D’Alessio, D. A., Woods, S. C., & Seeley, R. J. (2011). Hyperphagia and increased fat accumulation in two models of chronic cns glucagon-like peptide-1 loss of function. Journal of Neuroscience, 31, 3904–3913.10.1523/JNEUROSCI.2212-10.2011
  • Cork, S. C., Richards, J. E., Holt, M. K., Gribble, F. M., Reimann, F., & Trapp, S. (2015). Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Molecular Metabolism, 4, 718–731.10.1016/j.molmet.2015.07.008
  • Dampney, R. A. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiological Reviews, 74, 323–364.
  • Dayas, C. V., Buller, K. M., Crane, J. W., Xu, Y., & Day, T. A. (2001). Stressor categorization: Acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. European Journal of Neuroscience, 14, 1143–1152.10.1046/j.0953-816x.2001.01733.x
  • Deacon, C. F. (2004). Circulation and degradation of GIP and GLP-1. Hormone and Metabolic Research, 36, 761–765.10.1055/s-2004-826160
  • de Heer, J., Rasmussen, C., Coy, D. H., & Holst, J. J. (2008). Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia, 51, 2263–2270.10.1007/s00125-008-1149-y
  • Dickson, S. L., Shirazi, R. H., Hansson, C., Bergquist, F., Nissbrandt, H., & Skibicka, K. P. (2012). The glucagon-like peptide 1 (glp-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic glp-1 receptors. Journal of Neuroscience, 32, 4812–4820.10.1523/JNEUROSCI.6326-11.2012
  • Dimicco, J. A., & Zaretsky, D. V. (2007). The dorsomedial hypothalamus: A new player in thermoregulation. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 292, R47–63.
  • Dunphy, J. L., Taylor, R. G., & Fuller, P. J. (1998). Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Molecular and Cellular Endocrinology, 141, 179–186.10.1016/S0303-7207(98)00096-3
  • During, M. J., Cao, L., Zuzga, D. S., Francis, J. S., Fitzsimons, H. L., Jiao, X., … Haile, C. N. (2003). Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Medicine, 9, 1173–1179.10.1038/nm919
  • Egan, J. M., Bulotta, A., Hui, H., & Perfetti, R. (2003). GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes/Metabolism Research and Reviews, 19, 115–123.10.1002/(ISSN)1520-7560
  • Farilla, L., Hui, H., Bertolotto, C., Kang, E., Bulotta, A., Di Mario, U., & Perfetti, R. (2002). Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in zucker diabetic rats. Endocrinology, 143, 4397–4408.10.1210/en.2002-220405
  • Ghosal, S., Myers, B., & Herman, J. P. (2013). Role of central glucagon-like peptide-1 in stress regulation. Physiology & Behavior, 122, 201–207.10.1016/j.physbeh.2013.04.003
  • Gil-Lozano, M., Pérez-Tilve, D., Alvarez-Crespo, M., Martís, A., Fernandez, A. M., Catalina, P. A. F., … Mallo, F. (2010). GLP-1(7-36)-amide and exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology, 151, 2629–2640.10.1210/en.2009-0915
  • Gil-Lozano, M., Romaní-Pérez, M., Outeiriño-Iglesias, V., Vigo, E., González-Matías, L. C., Brubaker, P. L., & Mallo, F. (2014). Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats. Endocrinology, 155, 2511–2523.10.1210/en.2013-1718
  • Griffioen, K. J., Wan, R., Okun, E., Wang, X., Lovett-Barr, M. R., Li, Y., … Mattson, M. P. (2011). GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovascular Research, 89, 72–78.10.1093/cvr/cvq271
  • Grill, H. J., & Hayes, M. R. (2012). Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabolism, 16, 296–309.10.1016/j.cmet.2012.06.015
  • Hansen, L., Deacon, C. F., Ørskov, C., & Holst, J. J. (1999). Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology, 140, 5356–5363.
  • Hisadome, K., Reimann, F., Gribble, F. M., & Trapp, S. (2010). Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: Electrical properties of glucagon-like peptide 1 neurons. Diabetes, 59, 1890–1898.10.2337/db10-0128
  • Hisadome, K., Reimann, F., Gribble, F. M., & Trapp, S. (2011). CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs. Diabetes, 60, 2701–2709.10.2337/db11-0489
  • Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87, 1409–1439.10.1152/physrev.00034.2006
  • Holst, J. J., & Deacon, C. F. (2005). Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia, 48, 612–615.10.1007/s00125-005-1705-7
  • Hsu, T. M., Hahn, J. D., Konanur, V. R., Lam, A., & Kanoski, S. E. (2015). Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology, 40, 327–337.10.1038/npp.2014.175
  • Kieffer, T. J., McIntosh, C. H., & Pederson, R. A. (1995). Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 136, 3585–3596.
  • Kinzig, K. P., D’Alessio, D. A., Herman, J. P., Sakai, R. R., Vahl, T. P., Figueiredo, H. F., … Seeley, R. J. (2003). CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. The Journal of Neuroscience, 23, 6163–6170.
  • Kinzig, K. P., Hargrave, S. L., & Honors, M. A. (2008). Binge-type eating attenuates corticosterone and hypophagic responses to restraint stress. Physiology & Behavior, 95, 108–113.10.1016/j.physbeh.2008.04.026
  • Kreisler, A. D., & Rinaman, L. (2016). Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 310, R906–R916.10.1152/ajpregu.00243.2015
  • Kreymann, B., Ghatei, M.A., Williams, G., & Bloom, S. R. (1987). Glucagon-like peptide-1 7-36: A physiological incretin in man. The Lancet, 330, 1300–1304.10.1016/S0140-6736(87)91194-9
  • Lachey, J. L., D’Alessio, D. A., Rinaman, L., Elmquist, J. K., Drucker, D. J., & Seeley, R. J. (2005). The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: Differential effects in rats and mice. Endocrinology, 146, 458–462.10.1210/en.2004-0419
  • Larsen, P. J., Tang-Christensen, M., Holst, J. J., & Ørskov, C. (1997). Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience, 77, 257–270.10.1016/S0306-4522(96)00434-4
  • Larsen, P. J., Tang-Christensen, M., & Jessop, D. S. (1997). Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology, 138, 4445–4455.
  • Lee, S. J., Diener, K., Kaufman, S., Krieger, J.-P., Pettersen, K. G., Jejelava, N., … Langhans, W. (2016). Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Molecular Metabolism, 5, 552–565.10.1016/j.molmet.2016.04.008
  • Llewellyn-Smith, I. J., Gnanamanickam, G. J., Reimann, F., Gribble, F. M., & Trapp, S. (2013). Preproglucagon (PPG) neurons innervate neurochemicallyidentified autonomic neurons in the mouse brainstem. Neuroscience, 229, 130–143.10.1016/j.neuroscience.2012.09.071
  • Llewellyn-Smith, I. J., Marina, N., Manton, R. N., Reimann, F., Gribble, F. M., & Trapp, S. (2015). Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience, 284, 872–887.10.1016/j.neuroscience.2014.10.043
  • Llewellyn-Smith, I. J., Reimann, F., Gribble, F. M., & Trapp, S. (2011). Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience, 180, 111–121.10.1016/j.neuroscience.2011.02.023
  • Maniscalco, J. W., Kreisler, A. D., & Rinaman, L. (2012). Satiation and stress-induced hypophagia: Examining the role of hindbrain neurons expressing prolactin-releasing peptide or glucagon-like peptide 1. Frontiers in Neuroscience, 6, 199.
  • Maniscalco, J. W., Zheng, H., Gordon, P. J., & Rinaman, L. (2015). Negative energy balance blocks neural and behavioral responses to acute stress by "silencing" central glucagon-like peptide 1 signaling in rats. Journal of Neuroscience, 35, 10701–10714.10.1523/JNEUROSCI.3464-14.2015
  • Merchenthaler, I., Lane, M., & Shughrue, P. (1999). Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. The Journal of Comparative Neurology, 403, 261–280.10.1002/(ISSN)1096-9861
  • Mietlicki-Baase, E. G., Ortinski, P. I., Reiner, D. J., Sinon, C. G., McCutcheon, J. E., Pierce, R. C., … Hayes, M. R. (2014). Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic ampa/kainate signaling. Journal of Neuroscience, 34, 6985–6992.10.1523/JNEUROSCI.0115-14.2014
  • Mietlicki-Baase, E. G., Ortinski, P. I., Rupprecht, L. E., Olivos, D. R., Alhadeff, A. L., Pierce, R. C., & Hayes, M. R. (2013). The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. AJP: Endocrinology and Metabolism, 305, E1367–E1374.10.1152/ajpendo.00413.2013
  • Nauck, M. A., Niedereichholz, U., Ettler, R., Holst, J. J., Ørskov, C., Ritzel, R., & Schmiegel, W. H. (1997). Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. American Journal of Physiology, 273, E981–988.
  • Ørskov, C., Holst, J. J., & Nielsen, O. V. (1988). Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology, 123, 2009–2013.10.1210/endo-123-4-2009
  • Rinaman, L. (1999a). A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. American Journal of Physiology, 277, R1537–1540.
  • Rinaman, L. (1999b). Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. American Journal of Physiology, 277, R582–590.
  • Robinson, L. E., Holt, T. A., Rees, K., Randeva, H. S., & O’Hare, J. P. (2013). Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: Systematic review and meta-analysis. BMJ Open, 3. doi:10.1136/bmjopen-2012-001986
  • Sarkar, S., Fekete, C., Légrádi, G., & Lechan, R. M. (2003). Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Research, 985, 163–168.10.1016/S0006-8993(03)03117-2
  • Sawchenko, P. E., Li, H. Y., & Ericsson, A. (2000). Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Progress in Brain Research, 122, 61–78.10.1016/S0079-6123(08)62131-7
  • Schmidt, H. D., Mietlicki-Baase, E. G., Ige, K. Y., Maurer, J. J., Reiner, D. J., Zimmer, D. J., … Hayes, M. R. (2016). Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology, 41, 1917–1928.10.1038/npp.2015.362
  • Shirazi, R., Palsdottir, V., Collander, J., Anesten, F., Vogel, H., Langlet, F., … Skibicka, K. P. (2013). Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proceedings of the National Academy of Sciences, 110, 16199–16204.10.1073/pnas.1306799110
  • Smits, M. M., Muskiet, M. H., Tonneijck, L., Hoekstra, T., Kramer, M. H., Diamant, M., & van Raalte, D. H. (2016). Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males. British Journal of Clinical Pharmacology, 81, 613–620.10.1111/bcp.v81.4
  • Tang-Christensen, M., Larsen, P. J., Goke, R., Fink-Jensen, A., Jessop, D. S., Moller, M., & Sheikh, S. P. (1996). Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. American Journal of Physiology, 271, R848–856.
  • Tauchi, M., Zhang, R., D’Alessio, D. A., Stern, J. E., & Herman, J. P. (2008). Distribution of glucagon-like peptide-1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei. Journal of Chemical Neuroanatomy, 36, 144–149.10.1016/j.jchemneu.2008.07.009
  • Thiebaud, N., Llewellyn-Smith, I. J., Gribble, F., Reimann, F., Trapp, S., & Fadool, D. A. (2016). The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. The Journal of Physiology, 594, 2607–2628.10.1113/tjp.2016.594.issue-10
  • Trapp, S., & Cork, S. C. (2015). PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 309, R795–R804.10.1152/ajpregu.00333.2015
  • Trapp, S., & Richards, J. E. (2013). The gut hormone glucagon-like peptide-1 produced in brain: Is this physiologically relevant? Current Opinion in Pharmacology, 13, 964–969.10.1016/j.coph.2013.09.006
  • Turton, M. D., O’Shea, D., Gunn, I., Beak, S. A., Edwards, C. M., Meeran, K., … Bloom, S. R. (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature, 379, 69–72.10.1038/379069a0
  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397–409.10.1038/nrn2647
  • van Dijk, G., & Thiele, T. E. (1999). Glucagon-like peptide-1 (7–36) amide: A central regulator of satiety and interoceptive stress. Neuropeptides, 33, 406–414.10.1054/npep.1999.0053
  • Vilsboll, T., Krarup, T., Deacon, C. F., Madsbad, S., & Holst, J. J. (2001). Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes, 50, 609–613.10.2337/diabetes.50.3.609
  • Vilsbøll, T., Krarup, T., Madsbad, S., & Holst, J. J. (2003). Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regulatory Peptides, 114, 115–121.10.1016/S0167-0115(03)00111-3
  • Vilsbøll, T., Krarup, T., Sonne, J., Madsbad, S., Vølund, A., Juul, A. G., & Holst, J. J. (2003). Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism, 88, 2706–2713.10.1210/jc.2002-021873
  • Vrang, N., & Grove, K. (2011). The brainstem preproglucagon system in a non-human primate (Macaca mulatta). Brain Research, 1397, 28–37.10.1016/j.brainres.2011.05.002
  • Vrang, N., Hansen, M., Larsen, P. J., & Tang-Christensen, M. (2007). Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Research, 1149, 118–126.10.1016/j.brainres.2007.02.043
  • Vrang, N., Phifer, C. B., Corkern, M. M., & Berthoud, H. R. (2003). Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 285, R470–R478.10.1152/ajpregu.00732.2002
  • Wang, Z., Wang, R. M., Owji, A. A., Smith, D. M., Ghatei, M. A., & Bloom, S. R. (1995). Glucagon-like peptide-1 is a physiological incretin in rat. Journal of Clinical Investigation, 95, 417–421.10.1172/JCI117671
  • Williams, D. L., Baskin, D. G., & Schwartz, M. W. (2009). Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology, 150, 1680–1687.10.1210/en.2008-1045
  • Yamamoto, H., Lee, C. E., Marcus, J. N., Williams, T. D., Overton, J. M., Lopez, M. E., … Elmquist, J. K. (2002). Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. Journal of Clinical Investigation, 110, 43–52.10.1172/JCI0215595
  • Zheng, H., Cai, L., & Rinaman, L. (2015). Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Structure and Function, 220, 1213–1219.10.1007/s00429-014-0714-z