888
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation of intrinsic dynamics of enzymes involved in metabolic pathways using coarse-grained normal mode analysis

ORCID Icon, , , , , , , , , , , , , , , , & | (Reviewing Editor) show all
Article: 1291877 | Received 04 Jan 2017, Accepted 02 Feb 2017, Published online: 10 Apr 2017

References

  • Agarwal, P. K. (2005). Role of protein dynamics in reaction rate enhancement by enzymes. Journal of the American Chemical Society, 127, 15248–15256.10.1021/ja055251s
  • Agarwal, P. K., Billeter, S. R., Rajagopalan, P. R., Benkovic, S. J., & Hammes-Schiffer, S. (2002). Network of coupled promoting motions in enzyme catalysis. Proceedings of the National Academy of Sciences, 99, 2794–2799.
  • Allewell, N. M., Shi, D., Morizono, H., & Tuchman, M. (1999). Molecular recognition by ornithine and aspartate transcarbamylases. Accounts of Chemical Research, 32, 885–894.10.1021/ar950262j
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36, 419–424.10.1002/(ISSN)1097-0134
  • Bahar, I., & Rader, A. J. (2005). Coarse-grained normal mode analysis in structural biology. Current Opinion in Structural Biology, 15, 586–592.10.1016/j.sbi.2005.08.007
  • Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G., … Phillips, A. W. (1979). Sequence, structure and activity of phosphoglycerate kinase: A possible hinge-bending enzyme. Nature, 279, 773–777.10.1038/279773a0
  • Bennett, W. S., Jr, & Steitz, T. A. (1978). Glucose-induced conformational change in yeast hexokinase. Proceedings of the National Academy of Sciences, 75, 4848–4852.10.1073/pnas.75.10.4848
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2012). Biochemistry (7th ed.). New YorK, NY: W.H. Freeman and Company.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.10.1093/nar/28.1.235
  • Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., … Wright, P. E. (2011). A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science, 332, 234–238.10.1126/science.1198542
  • Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of Calcutta Mathematical Society, 35, 99–109.
  • Brooks, B., & Karplus, M. (1983). Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proceedings of the National Academy of Sciences, 80, 6571–6575.10.1073/pnas.80.21.6571
  • Carnevale, V., Pontiggia, F., & Micheletti, C. (2007). Structural and dynamical alignment of enzymes with partial structural similarity. Journal of Physics: Condensed Matter, 19, 285206–285214.10.1088/0953-8984/19/28/285206
  • Chennubhotla, C., & Bahar, I. (2007). Signal propagation in proteins and relation to equilibrium fluctuations. PLOS Computational Biology, 3, 1716–1726.
  • Chennubhotla, C., Yang, Z., & Bahar, I. (2008). Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Molecular BioSystems, 4, 287–292.10.1039/b717819k
  • Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5, 823–826.
  • Davenport, R. C., Bash, P. A., Seaton, B. A., Karplus, M., Petsko, G. A., & Ringe, D. (1991). Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analog of the intermediate on the reaction pathway. Biochemistry, 30, 5821–5826.10.1021/bi00238a002
  • Devos, D., & Valencia, A. (2000). Practical limits of function prediction. Proteins: Structure, Function, and Genetics, 41, 98–107.10.1002/(ISSN)1097-0134
  • Dorner, M. E., McMunn, R. D., Bartholow, T. G., Calhoon, B. E., Conlon, M. R., Dulli, J. M., … Hati, S. (2015). Comparison of intrinsic dynamics of cytochrome P450 proteins using normal mode analysis. Protein Science, 24, 1495–1507.
  • Dunten, P., Belunis, C., Crowther, R., Hollfelder, K., Kammlott, U., Levin, W., … Wertheimer, S. J. (2002). Crystal structure of human cytosolic phosphoenolpyruvate carboxykinase reveals a new GTP-binding site. Journal of Molecular Biology, 316, 257–264.10.1006/jmbi.2001.5364
  • Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M., Wolf-Watz, M., Bosco, D. A., … Kern, D. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438, 117–121.10.1038/nature04105
  • Eklund, H., Nordström, B.Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., … Åkeson, Å (1976). Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. Journal of Molecular Biology, 102, 27–59.
  • Erdin, S., Lisewski, A. M., & Lichtarge, O. (2011). Protein function prediction: towards integration of similarity metrics. Current Opinion in Structural Biology, 21, 180–188.10.1016/j.sbi.2011.02.001
  • Fedøy, A. E., Yang, N., Martinez, A., Leiros, H. K. S., & Steen, I. H. (2007). Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. Journal of Molecular Biology, 372, 130–149.10.1016/j.jmb.2007.06.040
  • Frank, J., & Agrawal, R. K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature, 406, 318–322.10.1038/35018597
  • Fu, Z., Hu, Y., Markham, G. D., & Takusagawa, F. (1996). Flexible loop in the structure of s-adenosylmethionine synthetase crystallized in the tetragonal modification. Journal of Biomolecular Structure and Dynamics, 13, 727–739.10.1080/07391102.1996.10508887
  • Fuglebakk, E., Echave, J., & Reuter, N. (2012). Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics, 28, 2431–2440.10.1093/bioinformatics/bts445
  • Fuglebakk, E., Tiwari, S. P., & Reuter, N. (2014). Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochimica et Biophysica Acta, 1850, 911–922.
  • Go, N., Noguti, T., & Nishikawa, T. (1983). Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proceedings of the National Academy of Sciences, 80, 3696–3700.10.1073/pnas.80.12.3696
  • Goward, C. R., & Nicholls, D. J. (1994). Malate dehydrogenase: A model for structure, evolution, and catalysis. Protein Science, 3, 1883–1888.10.1002/pro.v3:10
  • Hammes-Schiffer, S., & Benkovic, S. J. (2006). Relating protein motion to catalysis. Annual Review of Biochemistry, 75, 519–541.10.1146/annurev.biochem.75.103004.142800
  • Hensen, U., Meyer, T., Haas, J., Rex, R., Vriend, G., & Grubmüller, H. (2012). Exploring protein dynamics space: The dynasome as the missing link between protein structure and function. PLoS ONE, 7, e33931.doi:10.1371/journal.pone.0033931
  • Henzler-Wildman, K. A., Lei, M., Thai, V., Kerns, S. J., Karplus, M., & Kern, D. (2007). A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature, 450, 913–916.10.1038/nature06407
  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450, 964–972.10.1038/nature06522
  • Hester, G., Brenner-Holzach, O., Rossi, F. A., Struck-Donatz, M., Winterhalter, K. H., Smit, J. D., & Piontek, K. (1991). The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett, 292, 237–242.
  • Hinsen, K. (1998). Analysis of domain motions by approximate normal mode calculations. Proteins: Structure, Function, and Genetics, 33, 417–429.10.1002/(ISSN)1097-0134
  • Hinsen, K., Petrescu, A. J., Dellerue, S., Bellissent-Funel, M. C., & Kneller, G. (2000). Harmonicity in slow protein dynamics. Chemical Physics, 261 25 –37.10.1016/S0301-0104(00)00222-6
  • Hinsen, K., Thomas, A., & Field, M. J. (1999). Analysis of domain motions in large proteins. Proteins: Structure, Function, and Genetics, 34, 369–382.10.1002/(ISSN)1097-0134
  • Hollup, S. M., Fuglebakk, E., Taylor, W. R., & Reuter, N. (2011). Exploring the factors determining the dynamics of different protein folds. Protein Science, 20, 197–209.10.1002/pro.558
  • Hollup, S. M., Salensminde, G., & Reuter, N. (2005). WEBnm@: A web application for normal mode analysis of proteins. BMC Bioinformatics, 6, 52.10.1186/1471-2105-6-52
  • Holm, L., & Rosenstrom, P. (2010). Dali server: Conservation mapping in 3D. Nucleic Acids Research, 38(Web Server), p. W545–W549.10.1093/nar/gkq366
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Genetics, 11, 205–217.10.1002/(ISSN)1097-0134
  • Klinman, J. P., & Kohen, A. (2013). Hydrogen tunneling links protein dynamics to enzyme catalysis. Annual Review of Biochemistry, 82, 471–496.10.1146/annurev-biochem-051710-133623
  • Kosloff, M., & Kolodny, R. (2008). Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins: Structure, Function, and Bioinformatics, 71, 891–902.10.1002/prot.v71:2
  • Lebioda, L., & Stec, B. (1991). Mechanism of enolase: the crystal structure of enolase-magnesium-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-.ANG. resolution. Biochemistry, 30, 2817–2822.10.1021/bi00225a012
  • Lemke, C. T., & Howell, P. L. (2001). The 1.6 Å crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis. Structure, 9, 1153–1164.10.1016/S0969-2126(01)00683-9
  • Lin, Y. Z., Liang, S. J., Zhou, J. M., Tsou, C. L., Wu, P., & Zhou, Z. (1990). Comparison of inactivation and conformational changes of d-glyceraldehyde-3-phosphate dehydrogenase during thermal denaturation. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1038, 247–252.10.1016/0167-4838(90)90212-X
  • Lisi, G. P., & Patrick Loria, J. P. (2016). Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. Progress in Nuclear Magnetic Resonance Spectroscopy, 92-93, 1–17.10.1016/j.pnmrs.2015.11.001
  • Liu, X., Speckhard, D. C., Shepherd, T. R., Sun, Y. J., Hengel, S. R., Yu, L., … Fuentes, E. J. (2016). Distinct roles for conformational dynamics in protein-ligand interactions. Structure, 24, 2053–2066.10.1016/j.str.2016.08.019
  • Lu, G., Dobritzsch, D., Baumann, S., Schneider, G., & König, S. (2000). The structural basis of substrate activation in yeast pyruvate decarboxylase. European Journal of Biochemistry, 267, 861–868.10.1046/j.1432-1327.2000.01070.x
  • Marques, O., & Sanejouand, Y. H. (1995). Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins: Structure, Function, and Genetics, 23, 557–560.10.1002/(ISSN)1097-0134
  • Mattevi, A., Bolognesi, M., & Valentini, G. (1996). The allosteric regulation of pyruvate kinase. FEBS Letters, 389, 15–19.10.1016/0014-5793(96)00462-0
  • Micheletti, C. (2013). Comparing proteins by their internal dynamics: Exploring structure–function relationships beyond static structural alignments. Physics of Life Reviews, 10(1), 1–26.10.1016/j.plrev.2012.10.009
  • Munz, M., Lyngsø, R., Hein, J., & Biggin, P. C. (2010). Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC Bioinformatics, 11, 188.10.1186/1471-2105-11-188
  • Pandini, A., Mauri, G., Bordogna, A., & Bonati, L. (2007). Detecting similarities among distant homologous proteins by comparison of domain flexibilities. Protein Engineering Design and Selection, 20, 285–299.
  • Park, J., Teichmann, S. A., Hubbard, T., & Chothia, C. (1997). Intermediate sequences increase the detection of homology between sequences. Journal of Molecular Biology, 273, 349–354.10.1006/jmbi.1997.1288
  • Roston, D., Kohen, A., Doron, D., & Major, D. T. (2014). Simulations of remote mutants of dihydrofolate reductase reveal the nature of a network of residues coupled to hydride transfer. Journal of Computational Chemistry, 35, 1411–1417.10.1002/jcc.v35.19
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higginsa, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.
  • Singh, P., Francis, K., & Kohen, A. (2015). Network of remote and local protein dynamics in dihydrofolate reductase catalysis. ACS Catalysis, 5, 3067–3073.10.1021/acscatal.5b00331
  • Skjaerven, L., Hollup, S., & Reuter, N. (2009). Normal mode analysis for proteins. Journal of Molecular Structure: THEOCHEM, 898, 42–48.10.1016/j.theochem.2008.09.024
  • Stoddard, B. L., Dean, A., & Koshland, D. E., Jr (1993). Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-.ANG. resolution: A pseudo-Michaelis ternary complex. Biochemistry, 32, 9310–9316.10.1021/bi00087a008
  • Strom, A. M., Fehling, S. C., Bhattacharyya, S., & Hati, S. (2014). Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations. Journal of Molecular Modeling, 20, 2245.10.1007/s00894-014-2245-1
  • Tama, F., & Brooks, C. L. (2005). 3rd diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. Journal of Molecular Biology, 345, 299–314.10.1016/j.jmb.2004.10.054
  • Tiwari, S. P., Fuglebakk, E., Hollup, S. M., Skjærven, L., Cragnolini, T., Grindhaug. S. H., … Reuter, N. (2014). WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics, 15, 6597.
  • Tobi, D. (2013). Large-scale analysis of the dynamics of enzymes. Proteins: Structure, Function, and Bioinformatics, 81, 1910–1918.10.1002/prot.24335
  • Tousignant, A., & Pelletier, J. N. (2004). Protein motions promote catalysis. Chemistry & Biology, 11, 1037–1042.10.1016/j.chembiol.2004.06.007
  • Vöhringer-Martinez, E., & Dörner, C. (2016). Conformational substrate selection contributes to the enzymatic catalytic reaction mechanism of pin1. The Journal of Physical Chemistry B, 120, 12444–12453.10.1021/acs.jpcb.6b09187
  • Wang, S., & Eisenberg, D. (2003). Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Science, 12, 1097–1108.10.1110/(ISSN)1469-896X
  • Warren, N., Strom, A., Nicolet, B., Albin, K., Albrecht, J., Bausch, B., … Gunderson, A. (2014). Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases. The Protein Journal, 33, 184–198.10.1007/s10930-014-9548-z
  • Weimer, K. M., Shane, B. L., Brunetto, M., Bhattacharyya, S., & Hati, S. (2009). Evolutionary basis for the coupled-domain motions in thermus thermophilus leucyl-tRNA synthetase. Journal of Biological Chemistry, 284, 10088–10099.10.1074/jbc.M807361200
  • Whisstock, J., & Lesk, A. (1999). Prediction of protein function from protein sequence and structure. Quarterly Reviews of Biophysics, 36, 307–340.10.1017/S0033583503003901
  • Wiegand, G., & Remington, S. J. (1986). Citrate synthase: Structure, control, and mechanism. Annual Review of Biophysics and Biophysical Chemistry, 15, 97–117.10.1146/annurev.bb.15.060186.000525
  • Winn, S. I., Watson, H. C., Harkins, R. N., & Fothergill, L. A. (1981). Structure and activity of phosphoglycerate mutase. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 293, 121–130.
  • Wolodko, W. T., Fraser, M. E., James, M. N., & Bridger, W. A. (1994). The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution. The Journal of Biological Chemistry, 269, 10883–10890.
  • Yang, L., Song, G., Carriquiry, A., & Jernigan, R. L. (2008). Close correspondence between the motions from principal component analysis of multiple HIV-1 Protease structures and elastic network modes. Structure, 16, 321–330.10.1016/j.str.2007.12.011
  • Zen, A., Micheletti, C., Keskin, O., & Nussinov,, R. (2010). Comparing interfacial dynamics in protein-protein complexes: an elastic network approach. BMC Structural Biology, 10, 26.10.1186/1472-6807-10-26