1,303
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Trichoderma harzianum T-22 and BOL-12QD inhibit lateral root development of Chenopodium quinoa in axenic co-culture

ORCID Icon, , & | (Reviewing editor)
Article: 1530493 | Received 11 May 2018, Accepted 20 Sep 2018, Published online: 12 Oct 2018

References

  • Abramoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36-42.
  • Ahmad, J. S. B., & Ralph. (1987). Rhizosphere competence of Trichoderma Harzianum. Phytopathology, 77(2), 182–189. doi:10.1094/Phyto-77-182
  • Arnon, D. I., Allen, M. B., & Whatley, F. R. (1954). Photosynthesis by isolated chloroplasts. Nature, 174(4426), 394–396.
  • Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., … Otambekova, M., et al. (2016). Worldwide evaluations of quinoa: Preliminary results from post international year of quinoa fao projects in nine countries. Frontiers in Plant Science, 7, 850. doi:10.3389/fpls.2016.00850
  • Bhargava, A., & Srivastava, S. (2013). Crop production and management. In A. Bhargava & S. Srivastava (Eds.), Quinoa: Botany, production and uses (p. 91). Wallingford, UK: CABI.
  • Carella, P., Wilson, D. C., & Cameron, R. K. (2015). Some things get better with age: Differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis. Plant Biotic Interactions, 5, 775.
  • Castellar, R., Obón, J. M., Alacid, M., & Fernández-López, J. A. (2003). Color properties and stability of betacyanins from opuntia fruits. Journal of Agricultural and Food Chemistry, 51(9), 2772–2776. doi:10.1021/jf021045h
  • Chacón, M., Rofríguez-Galán, O., & Al, E. (2007). Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma Harzianum. International Microbiology, 10, 19–27.
  • Chet, I., & Baker, R. (1981). Isolation and biocontrol potential of Trichoderma Hamatum from soil naturally suppressive to Rhizoctonia Solani. Phytopathology, 71, 286–290. doi:10.1094/Phyto-71-286
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R., & López-Bucio, J. (2014). Trichoderma Spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+elimination through root exudates. Molecular Plant-Microbe Interactions, 27(6), 503–514. doi:10.1094/MPMI-09-13-0265-R
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A., & López-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis Thaliana and confers resistance against necrotrophic fungi Botrytis Cinerea. Plant Signaling & Behavior, 6(10), 1554–1563. doi:10.4161/psb.6.10.17443
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma Virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579–1592. doi:10.1104/pp.108.130369
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma Spp. And their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology, 92(4), fiw036. doi:10.1093/femsec/fiw036
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Herrera-Estrella, A., & López-Bucio, J. (2014). The 4-phosphopantetheinyl transferase of Trichoderma Virens plays a role in plant protection against Botrytis Cinerea through volatile organic compound emission. Plant and Soil, 379(1–2), 261–274. doi:10.1007/s11104-014-2069-x
  • Danielsen, S., & Ames, T. (2000). Mildew (Peronospora Farinosa) of Quinoa (Chenopodium Quinua Willd) in the andean region: Practical manual for the study of the disease and the pathogen (Vol. 32). Lima, Peru: International Potato Center.
  • Danielsen, S., Bonifacio, A., & Ames, T. (2003). Diseases of quinoa (Chenopodium Quinoa). Food Reviews International, 19(1–2), 43–59. doi:10.1081/FRI-120018867
  • Danielsen, S., & Munk, L. (2004). Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Protection, 23(3), 219–228. doi:10.1016/j.cropro.2003.08.010
  • Dickson, M. H., & Petzoldt, R. (1993). Plant age and isolate source affect expression of downy mildew resistance in broccoli. HortScience, 28(7), 730–731.
  • Espinal Churata, C., Huanca, M., Terrazas Siles, E., & Giménez Turba, A. (2010). Evaluación De La Actividad Biocontroladora De Trichoderma inhamatum Cepa Bol 12 Qd, Frente a Botrytis fabae, Causante De La Mancha Chocolate En Cultivos De Haba (Vicia faba). BIOFARBO 18(1), 13-30.
  • Farber, D. H., & Mundt, C. C. (2017). Effect of plant age and leaf position on susceptibility to wheat stripe rust. Phytopathology, 107(4), 412–417. doi:10.1094/PHYTO-07-16-0284-R
  • Gandarillas, A., Saravia, R., Plata, G., Quispe, R., & Ortiz-Romero, R. (2015). Principle quinoa pests and diseases. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of quinoa in the world in 2013 (pp. 192–217). Rome: FAO & CIRAD.
  • García-Espejo, C. N., Mamani-Mamani, M. M., Chávez-Lizárraga, G. A., & Álvarez-Aliaga, M. T. (2016). Evaluación De La Actividad Enzimática Del Trichoderma inhamatum (Bol-12 Qd) Como Posible Biocontrolador. Journal of the Selva Andina Research Society, 7(1), 20–32.
  • González, J. A., Languasco, P., & Prado, F. E. (2014). Efecto De Las Vinazas Sobre La Germinación De Soja, Trigo Y Quinoa En Condiciones Controladas. Boletín de la Sociedad Argentina de Botánica, 49(4), 473–481.
  • Hadar, Y., Harman, G. E., & Taylor, A. G. (1984). Evaluation of Trichoderma Koningii and T. Harzianum from New York soils for biological control of seed rot caused by Pythium Spp. Phytopathology, 74(1), 106–110. doi:10.1094/Phyto-74-106
  • Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma Spp. Phytopathology, 96(2), 190–194. doi:10.1094/PHYTO-96-0190
  • Harman, G. E. (2011). Trichoderma—not just for biocontrol anymore. Phytoparasitica, 39(2), 103–108. doi:10.1007/s12600-011-0151-y
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. doi:10.1038/nrmicro797
  • Harman, G. E., Taylor, A. G., & Stasz, T. E. (1989). Combining effective strains of trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Disease, 73(8), 631–637. doi:10.1094/PD-73-0631
  • Hung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of trichoderma volatile organic compounds. Fungal Ecology, 6(1), 19–26. doi:10.1016/j.funeco.2012.09.005
  • Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The resistance of quinoa (Chenopodium Quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1–2), 99–109. doi:10.1081/FRI-120018872
  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. doi:10.1038/nature05286
  • Khan, M. I., & Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267–295. doi:10.1016/j.phytochem.2015.06.008
  • Kottb, M., Gigolashvili, T., Großkinsky, D. K., & Piechulla, B. (2015). Trichoderma volatiles effecting Arabidopsis: From inhibition to protection against phytopathogenic fungi. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00995
  • Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., … Grigoriev, I. V. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of trichoderma. Genome Biology, 12(4), R40. doi:10.1186/gb-2011-12-10-r102
  • Kujala, T., Loponen, J., & Pihlaja, K. (2001). Betalains and phenolics in red beetroot (Beta Vulgaris) peel extracts: Extraction and characterisation. Zeitschrift für Naturforschung C, 56(5–6), 343–348. doi:10.1515/znc-2001-5-604
  • Kus, J. V., Zaton, K., Sarkar, R., & Cameron, R. K. (2002). Age-related resistance in Arabidopsis is a developmentally regulated defense response to pseudomonas syringae. The Plant Cell Online, 14(2), 479–490. doi:10.1105/tpc.010481
  • Lemarié, S., Robert-Seilaniantz, A., Lariagon, C., Lemoine, J., Marnet, N., Levrel, A., … Gravot, A. (2015). Camalexin contributes to the partial resistance of arabidopsis thaliana to the biotrophic soilborne protist Plasmodiophora Brassicae. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00539
  • Maag, D., Kandula, D. R. W., Müller, C., Mendoza-Mendoza, A., Wratten, S. D., Stewart, A., & Rostás, M. (2013). Trichoderma Atroviride Lu132 promotes plant growth but not induced systemic resistance to Plutella Xylostella in oilseed rape. BioControl, 59(2), 241–252. doi:10.1007/s10526-013-9554-7
  • Mert-Türk, F., Bennett, M. H., Mansfield, J. W., & Holub, E. B. (2003). Camalexin accumulation in Arabidopsis Thaliana following abiotic elicitation or inoculation with virulent or avirulent Hyaloperonospora Parasitica. Physiological and Molecular Plant Pathology, 62(3), 137–145. doi:10.1016/S0885-5765(03)00047-X
  • Mukherjee, P. K. (2013). Trichoderma: Biology and applications. Boston, MA: CABI.
  • Nagaraju, A., Sudisha, J., Murthy, S. M., & Ito, S.-I. (2012). Seed priming with Trichoderma Harzianum isolates enhances plant growth and induces resistance against Plasmopara Halstedii, an incitant of sunflower downy mildew disease. Australasian Plant Pathology, 41(6), 609–620. doi:10.1007/s13313-012-0165-z
  • Nandini, B., Hariprasad, P., Niranjana, S. R., Shetty, H. S., & Geetha, N. P. (2013). Elicitation of resistance in pearl millet by oligosaccharides of trichoderma spp. against downy mildew disease. Journal of Plant Interactions, 8(1), 45–55. doi:10.1080/17429145.2012.710655
  • Ni, Z., Kim, E.-D., & Chen, Z. J. (2009). Chlorophyll and starch assays. Protocol Exchange, 1. doi:10.1038/nprot.2009.12
  • Oldroyd, G. E. D. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252–263. doi:10.1038/nrmicro2990
  • Ortuño, N., Castillo, J., Claros, M., Navia, O., Angulo, M., Barja, D., … Angulo, V. (2013). Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy, 3(4), 732–746. doi:10.3390/agronomy3040732
  • Ortuño, N., Castillo, J. A., Miranda, C., Claros, M., & Soto, X. (2016). The use of secondary metabolites extracted from trichoderma for plant growth promotion in the Andean highlands. Renewable Agriculture and Food Systems, 32(4), 366-375.
  • Panter, S. N., & Jones, D. A. (2002). Age-related resistance to plant pathogens. In J. A. Callow (Ed.), Advances in botanical research (pp. 251–280). Cambridge, MA: Academic Press.
  • Pelagio-Flores, R., Esparza-Reynoso, S., Garnica-Vergara, A., López-Bucio, J., & Herrera-Estrella, A. (2017). Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00822
  • Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., Moser, C., … Pertot, I. (2012). Downy mildew resistance induced by Trichoderma Harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13(1), 660. doi:10.1186/1471-2164-13-660
  • Polturak, G., & Aharoni, A. (2018). “La Vie En Rose”: Biosynthesis, sources, and applications of betalain pigments. Molecular Plant, 11(1), 7–22. doi:10.1016/j.molp.2017.10.008
  • Polturak, G., Grossman, N., Vela-Corcia, D., Dong, Y., Nudel, A., Pliner, M., … Aharoni, A. (2017). Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci U S A, 114(34), 9062–9067. doi:10.1073/pnas.1707176114
  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., … Zurita-Silva, A., et al. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349–359. doi:10.1007/s13593-013-0195-0
  • Saenz-Mata, J., & Jimenez-Bremont, J. F. (2012). Hr4 gene is induced in the arabidopsis-trichoderma atroviride beneficial interaction. International Journal of Molecular Sciences, 13(7), 9110–9128. doi:10.3390/ijms13079110
  • Sáenz-Mata, J., Salazar-Badillo, F. B., & Jiménez-Bremont, J. F. (2014). Transcriptional regulation of Arabidopsis Thaliana Wrky genes under interaction with beneficial fungus Trichoderma Atroviride. Acta Physiologiae Plantarum, 36(5), 1085–1093. doi:10.1007/s11738-013-1483-7
  • Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., Herrera-Estrella, A., & Casas-Flores, S. (2011). Colonization of Arabidopsis roots by Trichoderma Atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131(1), 15–26. doi:10.1007/s10658-011-9782-6
  • Salzer, P., Bonanomi, A., Beyer, K., Vögeli-Lange, R., Aeschbacher, R. A., Lange, J., … Boller, T. (2000). Differential expression of eight chitinase genes in Medicago Truncatula Roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-Microbe Interactions, 13(7), 763–777. doi:10.1094/MPMI.2000.13.7.763
  • Samolski, I., Rincón, A. M., Pinzón, L. M., Viterbo, A., & Monte, E. (2012). The Qid74 gene from Trichoderma Harzianum has a role in root architecture and plant biofertilization. Microbiology, 158(1), 129–138. doi:10.1099/mic.0.053140-0
  • Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799. doi:10.1007/s00253-010-2632-1
  • Sepúlveda-Jiménez, G., Rueda-Benítez, P., Porta, H., & Rocha-Sosa, M. (2004). Betacyanin Synthesis in red beet (Beta Vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiological and Molecular Plant Pathology, 64(3), 125–133. doi:10.1016/j.pmpp.2004.08.003
  • Stasz, T. E., Harman, G. E., & Weeden, N. F. (1988). Protoplast preparation and fusion in two biocontrol strains of Trichoderma Harzianum. Mycologia, 141–150. doi:10.1080/00275514.1988.12025515
  • Testen, A. L., Del Mar Jiménez-Gasco, M., Ochoa, J. B., & Backman, P. A. (2014). Molecular detection of Peronospora Variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States. Phytopathology, 104(4), 379–386. doi:10.1094/PHYTO-07-13-0198-R
  • Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. On tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 341–354. doi:10.1111/j.1364-3703.2010.00674.x
  • Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium Quinoa Willd.), an Ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547. doi:10.1002/jsfa.4158
  • Weih, M. (2003). Trade-offs in plants and the prospects for breeding using modern biotechnology. New Phytologist, 158(1), 7–9. doi:10.1046/j.1469-8137.2003.00716.x
  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315–322.
  • Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40, 1. doi:10.18637/jss.v040.i01
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer-Verlag.
  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis Sativus L.) by the biocontrol agent Trichoderma Harzianum. Applied and Environmental Microbiology, 65(3), 1061–1070.
  • Yedidia, I., Srivastva, A. K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma Harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2), 235–242. doi:10.1023/A:1011990013955