874
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bismut–Elworthy–Li formula for subordinated Brownian motion applied to hedging financial derivatives

ORCID Icon, ORCID Icon & | (Reviewing Editor)
Article: 1384125 | Received 12 Jun 2017, Accepted 15 Sep 2017, Published online: 06 Oct 2017

References

  • Applebaum, D. (2004). Lévy processes and stochastic calculus. Cambridge studies in advanced mathematics. Cambridge: Cambridge University Press.
  • Baños, D. R., Meyer-Brandis, T., Proseke, F., & Duedahl, S. (2015). Computing deltas without derivatives. Finance and Stochastics, 21, 509. doi:10.1007/s00780-016-0321-3 Preprint.
  • Bavouzet, M.-P., & Messaoud, M. (2006). Computation of Greeks using Malliavin’s calculus in jump type market models. Electronic Journal of Probability, 11(10), 276–300.
  • Bayazit, D., & Nolder, C. A. (2013). Malliavin calculus for Lévy markets and new sensitivities. Quantitative Finance, 13(8), 1257–1287.
  • Bermin, H.-P. (2000). Hedging lookback and partial lookback options using Malliavin calculus. Applied Mathematical Finance, 7(2), 75–100.
  • Cass, T. R., & Fritz, P. K. (2007). The Bismut-Elworthy-li formula for jump-diffusions and applications to Monte Carlo methods in finance. arXiv:math/0604311 [math.PR].
  • Chen, Z. Q., Song, R., & Zhang, X. (2015). Stochastic flows for Lévy processes with Hölder drifts. arXiv:1501.04758v1 [math-ph].
  • Di Nunno, G., Øksendal, B., & Proske, F. (2008). Malliavin calculus for Lévy processes with applications to finance. Berlin: Universitext--Springer.
  • Elworthy, K. D., & Li, X.-M. (1994). Formulae for the derivatives of heat semigroups. Journal of Functional Analysis, 125, 252–286.
  • Fournié, E., Lasry, J.-M., Lions, P.-L., Lebuchoux, J., & Touzi, N. (1999). Applications of Malliavin calculus to Monte Carlo methods in finance. Finance and Stochastics, 3(4), 391–412.
  • Janicki, A., & Weron, A. (1993). Simulation and chaotic behavior of alpha-stable stochastic processes. Boca Raton, FL: Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis.
  • Kateregga, M., Mataramvura, S., & Taylor, D. (2017). Parameter estimation for stable distributions with application to commodity futures log-returns. Cogent Economics & Finance, 5(1), 1318813.
  • Kawai, R., & Kohatsu-Higa, A. (2010). Computation of greeks and multidimensional density estimation for asset price models with time-changed brownian motion. Applied Mathematical Finance, 17(4), 301–321.
  • Khedher, A. (2012). Computation of the delta in multidimensional jump-diffusion setting with applications to stochastic volatility models. Stochastic Analysis and Applications, 30(3), 403–425.
  • Kusuoka, S. (2010). Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto Journal of Mathematics, 50(3), 469–644.
  • Meerschaert, M. M., & Straka, P. (2013). Inverse stable subordinators. Mathematical Modelling of Natural Phenomena, 8(2), 1–16.
  • Nualart, D. (1995). Malliavin calculus. Probability and Its applications. New York, NY: Springer-Verlag.
  • Privault, N. (1990). Chaotic and variational calculus in discrete and continuous time for the posisson process. Stochastics, 51, 83–109.
  • Song, R., & Vondraček, Z. (2003). Potential theory of subordinate killed Brownian motion in a domain. Probability Theory and Related Fields, 125, 578–592.
  • Sturm, S. (2004). Calculation of the greeks by Malliavin calculus (Technical report Institut für Matematik, Universität Wien. Diplomarbeit zur). Vienna: Erlangung des Akademischen Grades.
  • Sun, X., & Xie, Y. (2014). Smooth densities for SDEs driven by degenerate subordinated Brownian motion with state-dependent switching. arXiv:1410.5913v1 [math.PR].
  • Takeuchi, A. (2010). Bismut-elworthy-li-type formulae for stochastic differential equations with jumps. Journal of Theoretical Probability, 23(2), 576–604.
  • Wyłoma\‘{n}ska, A. (2012). Arithmetic Brownian motion subordinated by tempered stable and inverse tempered stable processes. arXiv:1203.0892v1 [math-ph].
  • Zhang, X. (2014). Derivative formula and gradient estimate for SDEs driven by α-stable processes. arXiv:1204.2630[math.PR].