1,285
Views
0
CrossRef citations to date
0
Altmetric
FINANCIAL ECONOMICS

On the goodness-of-fits of the generalized lambda distribution on high-frequency stock index returns

ORCID Icon, &
Article: 2095764 | Received 29 Sep 2021, Accepted 26 Jun 2022, Published online: 08 Jul 2022

References

  • Aït-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How often to sample a continuous-time process in the presence of market microstructure noise. The Review of Financial Studies, 18(2), 351–20. https://doi.org/10.1093/rfs/hhi016
  • Andersen, T., Bollerslev, T., Diebold, F. X., & Labys, P. (1999). The distribution of exchange rate volatility. Technical report, National Bureau of Economic Research.
  • Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579–625. https://doi.org/10.1111/1468-0262.00418
  • Babu, G., & Feigelson, E. (2006). Astrostatistics: Goodness-of-fit and all that! In Astronomical Data Analysis Software and Systems XV ASP Conference Series, volume 351, 127–136.
  • Bai, X. (2000). Beyond Merton’s utopia: effects of non-normality and dependence on the precision of variance estimaters using high-frequency financial data. PhD thesis, University of Chicago, Graduate School of Business.
  • Bandi, F. M., & Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79(3), 655–692. https://doi.org/10.1016/j.jfineco.2005.01.005
  • Barndorff-Nielsen, O. E., & Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 253–280. https://doi.org/10.1111/1467-9868.00336
  • Baum, C. F., Schaffer, M. E., and Stillman, S. . (2003). Instrumental variables and GMM: Estimation and testing. Stata Journal, 3(1), 1–31. https://doi.org/10.1177/1536867X0300300101
  • Baum, C. F. (2007). Instrumental variables estimation in stata. Boston College.
  • Chalabi, Y., Scott, D. J., & Würtz, D. (2010). The generalized lambda distribution as an alternative to model financial returns. Z¨urich and University of Auckland, Zürich and Auckland. Institut für Theoretische Physik
  • Chalabi, Y., Scott, D. J., & Wuertz, D. (2012). Flexible distribution modeling with the generalized lambda distribution. MPRA paper 43333. Munich: Munich Personal RePEc Archive.
  • Cheng, R., & Amin, N. (1983). Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society: Series B (Methodological), 45(3), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x
  • Corlu, C. G., & Corlu, A. (2015). Modelling exchange rate returns: Which flexible distribution to use? Quantitative Finance, 15(11), 1851–1864. https://doi.org/10.1080/14697688.2014.942231
  • Corlu, C. G., Meterelliyoz, M., & Tinic, M. (2016). Empirical distributions of daily equity index returns: A comparison. Expert Systems with Applications, 54, 170–192. https://doi.org/10.1016/j.eswa.2015.12.048
  • Corlu, C. G., & Meterelliyoz, M. (2016). Estimating the parameters of the generalized lambda distribution: Which method performs best? Communications in Statistics-Simulation and Computation, 45(7), 2276–2296. https://doi.org/10.1080/03610918.2014.901355
  • Corrado, C. J. (2001). Option pricing based on the generalized lambda distribution. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 21(3), 213–236. https://doi.org/10.1002/1096-9934(200103)21:3<213::AID-FUT2_3.0.CO;2-H
  • Dacorogna, M. M., & Pictet, O. V. (1997). Heavy tails in high-frequency financial data. SSRN. (No. 1996-12–11; Working Papers). Olsen and Associates. https://doi.org/10.2139/ssrn.939
  • Dias, A., Embrechts, P. et al. 2004. Dynamic copula models for multivariate high-frequency data in finance, Manuscript. ETH Zurich. 81.
  • Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105. https://doi.org/10.1086/294743
  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222, 309–368. https://doi.org/10.1098/rsta.1922.0009
  • Focardi, S. M., & Fabozzi, F. J. (2004). The mathematics of financial modeling and investment management (Vol. 138). John Wiley & Sons.
  • Freimer, M., Kollia, G., Mudholkar, G. S., & Lin, C. T. (1988). A study of the generalized tukey lambda family. Communications in Statistics-Theory and Methods, 17(10), 3547–3567. https://doi.org/10.1080/03610928808829820
  • Gan, F., Koehler, K. J., & Thompson, J. C. (1991). Probability plots and distribution curves for assessing the fit of probability models. The American Statistician, 45(1), 14–21. https://doi.org/10.1080/00031305.1991.10475759
  • Gençay, R., Ballocchi, G., Dacorogna, M., Olsen, R., & Pictet, O. (2002). Real-time trading models and the statistical properties of foreign exchange rates. International Economic Review, 463–491.
  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, 50(4), 1029–1054. https://doi.org/10.2307/1912775
  • Hansen, L. P., Heaton, J., & Yaron, A. (1996). Finite-sample properties of some alternative gmm estimators. Journal of Business & Economic Statistics, 14(3), 262–280. https://doi.org/10.1080/07350015.1996.10524656
  • Hastings, C., Mosteller, F., Tukey, J. W., and Winsor, C. P. (1947). Low moments for small samples: A comparative study of order statistics. The Annals of Mathematical Statistics, 18(3), 413–426. https://doi.org/10.1214/aoms/1177730388
  • Heinz, F. F., & Rusinova, D. (2015). An alternative view of exchange market pressure episodes in emerging Europe: An analysis using extreme value theory (EVT). SSRN Electronic Journal. In Working Paper Series (No. 1818; Working Paper Series). European Central Bank. https://doi.org/10.2139/ssrn.2628734
  • Jordan, R. B., & Loeffen, M. P. (2013). A new method for modelling biological variation using quantile functions. Postharvest Biology and Technology, 86, 387–401. https://doi.org/10.1016/j.postharvbio.2013.07.008
  • Karian, Z. A., Dudewicz, E. J., & Mcdonald, P. (1996). The extended generalized lambda distribution system for fitting distributions to data: History, completion of theory, tables, applications, the “final word” on moment fits. Communications in Statistics-Simulation and Computation, 25(3), 611–642. https://doi.org/10.1080/03610919608813333
  • Karian, Z. A., & Dudewicz, E. J. (2000). Fitting statistical distributions: The generalized lambda distribution and generalized bootstrap methods. CRC Press.
  • Karian, Z. A., & Dudewicz, E. J. (2016). Handbook of fitting statistical distributions with R. CRC Press.
  • Karvanen, J., & Nuutinen, A. (2008). Characterizing the generalized lambda distribution by l-moments. Computational Statistics & Data Analysis, 52(4), 1971–1983. https://doi.org/10.1016/j.csda.2007.06.021
  • King, R. A., & MacGillivray, H. (1999). A starship estimation method for the generalized distributions. Australian & New Zealand Journal of Statistics, 41(3), 353–374. https://doi.org/10.1111/1467-842X.00089
  • Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari, 10(12.2), 1.
  • Lakhany, A., & Mausser, H. (2000). Estimating the parameters of the generalized lambda distribution. Algo Research Quarterly, 3(3), 47–58.
  • Maghyereh, A. I., & Al-Zoubi, H. A. (2008). The tail behavior of extreme stock returns in the gulf emerging markets: An implication for financial risk management. Studies in Economics and Finance, 25(1), 21–37. https://doi.org/10.1108/10867370810857540
  • Mahdizadeh, M., & Zamanzade, E. (2017). New goodness of fit tests for the Cauchy distribution. Journal of Applied Statistics, 44(6), 1106–1121. https://doi.org/10.1080/02664763.2016.1193726
  • Mahdizadeh, M., & Zamanzade, E. (2019). Goodness-of-fit testing for the Cauchy distribution with application to financial modeling. Journal of King Saud University-Science, 31(4), 1167–1174. https://doi.org/10.1016/j.jksus.2019.01.015
  • Marcondes, D., Peixoto, C., & Maia, A. C. (2020). A survey of a hurdle model for heavy-tailed data based on the generalized lambda distribution. Communications in Statistics-Theory and Methods, 49(4), 781–808. https://doi.org/10.1080/03610926.2018.1549251
  • Marsani, M. F., Shabri, A., & Jan, N. A. M. (2017). Examine generalized lambda distribution fitting performance: An application to extreme share return in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 13(3). https://doi.org/10.11113/mjfas.v13n3.599
  • Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90–100. https://doi.org/10.1016/S0022-2496(02)00028-7
  • Okur, M. C. (1988). On fitting the generalized λ-distribution to air pollution data. Atmospheric Environment (1967), 22(11), 2569–2572. https://doi.org/10.1016/0004-6981(88)90489-1
  • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75(2), 237–249. https://doi.org/10.1093/biomet/75.2.237
  • Owusu Junior, P., & Alagidede, I. (2020). Risks in emerging markets equities: Time-varying versus spatial risk analysis. Physica A: Statistical Mechanics and Its Applications, 542, 123474. https://doi.org/10.1016/j.physa.2019.123474
  • Öztürk, A., & Dale, R. (1982). A study of fitting the generalized lambda distribution to solar radiation data. Journal of Applied Meteorology, 21(7), 995–1004. https://doi.org/10.1175/1520-0450(1982)021<0995:ASOFTG/2.0.CO;2
  • Öztürk, A., & Dale, R. F. (1985). Least squares estimation of the parameters of the generalized lambda distribution. Technometrics, 27(1), 81–84. https://doi.org/10.1080/00401706.1985.10488017
  • Pfaff, B. (2016). Financial risk modelling and portfolio optimization with R. John Wiley & Sons.
  • Ramberg, J. S., & Schmeiser, B. W. (1972). An approximate method for generating symmetric random variables. Communications of the ACM, 15(11), 987–990. https://doi.org/10.1145/355606.361888
  • Ramberg, J. S., & Schmeiser, B. W. (1974). An approximate method for generating asymmetric random variables. Communications of the ACM, 17(2), 78–82. https://doi.org/10.1145/360827.360840
  • Ramberg, J. S., Dudewicz, E. J., Tadikamalla, P. R., & Mykytka, E. F. (1979). A probability distribution and its uses in fitting data. Technometrics, 21(2), 201–214. https://doi.org/10.1080/00401706.1979.10489750
  • Ranneby, B. (1984). The maximum spacing method. an estimation method related to the maximum likelihood method. Scandinavian Journal of Statistics, 93–112.
  • Ridout, M. (2001). Fitting statistical distributions: The generalized lambda distribution and generalized bootstrap methods. Biometrics, 57(2), 657.
  • Scott, D. J., and Wuertz, D. (2012). An asymmetry-steepness parameterization of the generalized lambda distribution. Technical report, University Library of Munich.
  • Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). CRC Press.
  • Stock, J. H., Wright, J. H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20(4), 518–529. https://doi.org/10.1198/073500102288618658
  • Su, S. (2005a). A discretized approach to flexibly fit generalized lambda distributions to data. Journal of Modern Applied Statistical Methods, 4(2), 7. https://doi.org/10.22237/jmasm/1130803560
  • Su, S. (2005b). To match or not to match? The British Accounting Review, 37(1), 1–21. https://doi.org/10.1016/j.bar.2004.08.001
  • Su, S. (2007a). Fitting single and mixture of generalized lambda distributions to data via discretized and maximum likelihood methods: Gldex in r. Journal of Statistical Software, 21(9), 1–17. https://doi.org/10.18637/jss.v021.i09
  • Su, S. (2007b). Numerical maximum log likelihood estimation for generalized lambda distributions. Computational Statistics & Data Analysis, 51(8), 3983–3998. https://doi.org/10.1016/j.csda.2006.06.008
  • Su, S. (2010). Fitting glds and mixture of glds to data using quantile matching method. In Zaven A. KarianEdward J. Dudewicz, (eds)., Handbook of Fitting Statistical Distributions with R (pp. 557–583). Chapman and Hall/CRC.
  • Tarsitano, A. (2004). Fitting the generalized lambda distribution to income data. In COMPSTAT’2004 Symposium (pp. 1861–1867). Physica-Verlag/Springer.
  • Van Staden, P. J. . (2014). Modeling of generalized families of probability distribution in the quantile statistical universe. PhD thesis, University of Pretoria.
  • Wang, B., & Wang, X.-F. (2016). Fitting the generalized lambda distribution to pre-binned data. Journal of Statistical Computation and Simulation, 86(9), 1785–1797. https://doi.org/10.1080/00949655.2015.1082132
  • Wegman, E. J. (1972). Nonparametric probability density estimation: I. A summary of available methods. Technometrics, 14(3), 533–546. https://doi.org/10.1080/00401706.1972.10488943
  • Young, M. S., & Graff, R. A. (1995). Real estate is not normal: A fresh look at real estate return distributions. The Journal of Real Estate Finance and Economics, 10(3), 225–259. https://doi.org/10.1007/BF01096940
  • Zhu, X., & Sudret, B. (2019). Surrogating the response pdf of stochastic simulators using generalized lambda distributions. ICASP13 Proceedings.