1,635
Views
0
CrossRef citations to date
0
Altmetric
DEVELOPMENT ECONOMICS

Climate variability impacts on agricultural output in East Africa

, , &
Article: 2181281 | Received 26 Jul 2022, Accepted 13 Feb 2023, Published online: 24 Feb 2023

References

  • Abbas, S. (2020). Climate change and cotton production: An empirical investigation of Pakistan. Environmental Science and Pollution Research, 27(23), 29580–25. https://doi.org/10.1007/s11356-020-09222-0
  • Abraha-Kahsay, G., & Hansen, L. G. (2016). The effect of climate change and adaptation policy on agricultural production in Eastern Africa. Ecological Economics, 121, 54–64. https://doi.org/10.1016/j.ecolecon.2015.11.016
  • AfDB/IFAD. (2009). AFDB/IFAD Joint Evaluation of their agricultural operations and policies in Africa, Rome: Draft Report. African Development Bank.
  • Akpoti, K., Groen, T., Dossou-Yovo, E., Kabo-bah, A. T., & Zwart, S. J. (2022). Climate change-induced reduction in agricultural land suitability of West-Africa’s inland valley Landscapes. Agricultural Systems, 200, 103429. https://doi.org/10.1016/j.agsy.2022.103429
  • Alboghdady, M., & El-Hendawy, S. E. (2016). Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. International Journal of Climate Change Strategies and Management, 8(3), 463–472. https://doi.org/10.1108/IJCCSM-07-2015-0100
  • Amare, M., Jensen, N. D., Shiferaw, B., & Cissé, J. D. (2018). Rainfall shocks and agricultural productivity: Implication for rural household consumption. Agricultural Systems, 166, 79–89. https://doi.org/10.1016/j.agsy.2018.07.014
  • Attiaoui, I., & Boufateh, T. (2019). Impacts of climate change on cereal farming in Tunisia: A panel ARDL-PMG approach. Environmental Science Pollution Research, 26(13), 13334–13345. https://doi.org/10.1007/s11356-019-04867-y
  • Baig, I. A., Chandio, A. A., Ozturk, I., Kumar, P., Khan, Z. A., & Salam, M. A. (2022). Assessing the long‑ and short‑run asymmetrical effects of climate change on rice production. Empirical Evidence from India, Environmental Science and Pollution Research, 29(23), 34209–34230. https://doi.org/10.1007/s11356-021-18014-z
  • Bai, J., & Ng, S. (2004). A panic attack on Unit Roots and Cointegration. Econometrica, 72(4), 1127–1177. https://doi.org/10.1111/j.1468-0262.2004.00528.x
  • Barrios, S., Ouattara, B., & Strobl, E. (2008). The impact of climatic change on agricultural production: Is it different for Africa. Food Policy, 33(4), 287–298. https://doi.org/10.1016/j.foodpol.2008.01.003
  • Bersvendsen, T., & Ditzen, J. (2021). Testing for slope heterogeneity in Stata. The Stata Journal, 21(1), 51–80. https://doi.org/10.1177/1536867X211000004
  • Blanc, E. (2012). The impact of climate change on crop yields in sub-Saharan Africa. American Journal of Climate Change, 1(1), 1–13. https://doi.org/10.4236/ajcc.2012.11001
  • Breuer, B. B., McNown, R., & Wallac, M. (2002). Series-specific unit root tests with panel data. Oxford Bulletin of Economics and Statistics, 64(5), 527–546. https://doi.org/10.1111/1468-0084.00276
  • Burke, M., & Emerick, K. (2016). Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy, 8(3), 104–140. https://doi.org/10.1257/pol.20130025
  • Carrion-i-Silvestre, J. L., Barrio-Castro, T. D., & López-Bazo, E. (2005). Breaking the panels: An application to the GDP per capita. The Econometrics Journal, 8(2), 159–175. https://doi.org/10.1111/j.1368-423X.2005.00158.x
  • Carr, T. W., Mkuhlani, S., Segnon, A. C., Ali, Z., Zougmoré, R., Dangour, A. D., Green, R., & Scheelbeek, P. (2022). Climate change impacts and adaptation strategies for crops in West Africa: A systematic review. Environmental Research Letters, 17(5), 053001. https://doi.org/10.1088/1748-9326/ac61c8
  • Chandio, A. A., Jiang, Y., Rehman, A., & Rauf, A. (2020a). Short and long-run impacts of climate change on agriculture: an empirical evidence from China. International Journal of Climate Change Strategies Management,12(2), 201–221.
  • Chandio, A. A., Jiang, Y., Akram, W., Adeel, S., Irfan, M., & Jan, I. (2021). Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. Journal of Cleaner Production, 288, 125637. https://doi.org/10.1016/j.jclepro.2020.125637
  • Chandio, A. A., Ozturk, I., Akram, W., Ahmad, W., & Mirani, A. A. (2020b). Empirical analysis of climate change factors affecting cereal yield: Evidence from Turkey. Environmental Science and Pollution Research, 27(11), 11944–11957. https://doi.org/10.1007/s11356-020-07739-y
  • Chang, T., Gupta, R., Inglesi-Lotz, R., Simo-Kengne, B., Simithers, D., & Trembling, A. (2015). Renewable energy and growth: Evidence from heterogeneous panel of G7 countries using Granger causality. Renewable and Sustainable Energy Reviews, 52, 1405–1412. https://doi.org/10.1016/j.rser.2015.08.022
  • Conway, D., & Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21(1), 227–237. https://doi.org/10.1016/j.gloenvcha.2010.07.013
  • Dell, M., Jones, B. F., & Olken, B. A. (2009). Temperature and income: Reconciling new cross-sectional and panel estimates. American Economic Review, 99(2), 198–204. https://doi.org/10.1257/aer.99.2.198
  • Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal Macroeconomics, 4(3), 66–95. https://doi.org/10.1257/mac.4.3.66
  • De Salvo, M., Raffaelli, R., & Moser, R. (2013). The impact of climate change on permanent crops in an Alpine region. a Ricardian Analysis, Agricultural Systems, 118, 23–32. https://doi.org/10.1016/j.agsy.2013.02.005
  • Deschênes, O., & Greenstone, M. (2007). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. American Economic Review, 97(1), 354–385. https://doi.org/10.1257/aer.97.1.354
  • Deschênes, O., & Greenstone, M. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Reply. American Economic Review, 102(7), 3761–3773. https://doi.org/10.1257/aer.102.7.3761
  • Erikson, S., O’Brien, K., & Rosentrater, L. (2008). Climate Change in Eastern and Southern Africa: Impacts, Vulnerability and Adaptation. Global Environment Change and Human Security.
  • Espoir, D. K. & Ngepah, N. (2021). Income distribution and total factor productivity: across-country panel. International Economics and Economic, 18, 661–698.
  • Espoir, D. K. Mudiangombe, B. M., Bannor, F., Sunge, R., Mubenga-Tshitaka, J. L. (2022). CO2 emissions and economic growth: Assessing the heterogeneous effects across climate regimes in Africa. Science of the Total Environment, 804, 150089. https://doi.org/10.1016/j.scitotenv.2021.150089
  • Etwire, P. M., Koomson, I., & Martey, E. (2022). Impact of climate change adaptation on farm productivity and household welfare. Climatic Change, 170(1–2), 11. https://doi.org/10.1007/s10584-022-03308-z
  • Fisher, A. C., Hanemann, M. W., Roberts, M. J., & Schlenker, W. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Comment. American Economic Review, 102(7), 3749–3760. https://doi.org/10.1257/aer.102.7.3749
  • Gan, T. Y., Ito, M., Hülsmann, S., Qin, X., Lu, X. X., Liong, S. Y., Rutschman, P., Disse, M., & Koivusalo, H. (2016). Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrological Science Journal, 61, 1209–1226. https://dx.doi.org/10.1080/02626667.2015.1057143©2016IAHS
  • Gbetibouo, G. A., & Hassan, R. M. (2005). Measuring the economic impact of climate change on major South African field crops. a Ricardian Approach, Global and Planetary Change, 47(4), 143–152. https://doi.org/10.1016/j.gloplacha.2004.10.009
  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2018). Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. International Journal of Climatology, 39(1), 18–30. https://doi.org/10.1002/joc.5777
  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Nature, 9, 11376. https://doi.org/10.1038/s41598-019-47933-8
  • Gul, A., Chandio, A. A., Siyal, S. A., Rehman, A., & Xiumin, W. (2022). How climate change is impacting the major yield crops of Pakistan? an exploration from long‑ and short‑run estimation. Environmental Science and Pollution Research, 29(18), 26660–26674. https://doi.org/10.1007/s11356-021-17579-z
  • Guntukula, R., & Goyari, P. (2020). The impact of climate change on maize yields and its variability in Telangana, India: A panel approach study. Journal of Public Affairs, 20(3), 1. https://doi.org/10.1002/pa.2088
  • Herzer, D., & Vollmer, S. (2012). Inequality and growth: Evidence from panel cointegration. The Journal of Economic Inequality, 10(4), 489–503. https://doi.org/10.1007/s10888-011-9171-6
  • Hossfeld, O. (2010). Equilibrium real effective exchange rates and real exchange rate misalignments: Time series vs. panel estimates. Econstor FIW Working Paper, 65. http://hdl.handle.net/10419/121070
  • Hsiang, S. Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D. J., Muin-Wood, R., Wilson, P., Oppenheiner, M., Larsen, K., & Houser, T. (2017). Estimating economic damage from climate change in the United States. Science, 356, 1362–1369. https://doi.org/10.1126/science.aal4369
  • IPCC. (2007). Climate change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 996). Cambridge University Press.
  • IPCC., 2018. Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C approved by governments, Special Report.
  • Kabubo-Mariara, J., & Karanja, F. K. (2007). The economic impact of climate change on Kenyan crop agriculture. A Ricardian Approach, Global and Planetary Change, 57, 3(4), 319–330. https://doi.org/10.1016/j.gloplacha.2007.01.002
  • Kalkuhl, M., & Wenz, L. (2020). The impact of climate conditions on economic production. Evidence from a global panel of regions. Journal of Environmental Economics and Management, 103, 102360. https://doi.org/10.1016/j.jeem.2020.102360
  • Khan, Z., Ali, M., Jinyu, L., Shahbaz, M., & Siqun, Y. (2020). Consumption –based carbon emissions and trade nexus: evidence from nine oil exporting countries. Energy Economics, 89, 104806. https://doi.org/10.1016/j.eneco.2020.104806
  • Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya. a Review of Impacts on Agriculture and Food Security, Environment, Development and Sustainability, 23, 23–43. https://doi.org/10.1007/s10668-020-00589-1
  • Kotikot, S. M., Flores, A., Griffin, R. E., Sedah, A., Nyaga, J., Mugo, R., Limaya, A., & Irwin, D. E. (2018). Mapping threats to agriculture in East Africa. Performance of MODIS Derived LST for Frost Identification in Kenya’s Tea Plantations, International Journal of Applied Earth Observation and Geoinformation, 72, 131–139. https://doi.org/10.1016/j.jag.2018.05.009
  • Kurukulasuriya, P., & Mendelsohn, R. (2007). . In Policy Research Working Paper (pp. 4307). .
  • Lan-Huong, N. T., Bo, Y. S., & Fahad, S. (2019). Economic impact of climate change on agriculture using Ricardian approach: A case of northwest Vietnam. Journal of the Saudi Society of Agricultural Sciences, 18(4), 449–457. https://doi.org/10.1016/j.jssas.2018.02.006
  • Lanzafame, M. (2014). Temperature, rainfall and economic growth in Africa. Empirical Economics, 46(1), 1–18. https://doi.org/10.1007/s00181-012-0664-3
  • Lippert, C., Krimly, T., & Aurbacher, J. (2009). A Ricardian analysis of the impact of climate change on agriculture in Germany. Climatic Change, 97(3–4), 593–610. https://doi.org/10.1007/s10584-009-9652-9
  • Matiu, M., Ankerst, D. P., & Menzel, A. (2017). Interaction between temperature and drought in global and regional crop yield variability. PLoS ONE, (1), 1. https://doi.org/10.1371/journal.pone.0178339
  • McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., & White, K. S. (Eds.). (2001). Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change (Vol. 2). Cambridge University Press.
  • McCoskey, S., & Kao, C. (1998). A residual-based test of the null of cointegration in panel data. Econometric Reviews, 17(1), 57–84. https://doi.org/10.1080/07474939808800403
  • Mendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1(1), 5–19. https://doi.org/10.1080/19390450802495882
  • Mendelsohn, R., & Dinar, A. (1999). Climate change, agriculture, and developing countries: Does adaptation matter? World Bank Research Observer, 14(2), 277–293. https://doi.org/10.1093/wbro/14.2.277
  • Mendelsohn, R., & Dinar, A. (2003). Climate, water, and agriculture. Land Economics, 79(3), 328–341. https://doi.org/10.2307/3147020
  • Mendelsohn, R., Nordhaus, W., & Shaw, D. (1994). The impact of global warming on agriculture: A Ricardian analysis. The American Economic Review, 84(3), 622–641. https://www.jstor.org/stable/2118029
  • Mendelsohn, R., Nordhaus, W., & Shaw, D. (1996). Climate impacts on aggregate farm values: Accounting for adaptation. Agricultural and Forest Meteorology, 80(1), 55–67. https://doi.org/10.1016/0168-1923(95)02316-X
  • Miti´c, P., Ivanovi´c, O. M., & Zdravkovi´c, A. (2017). A cointegration analysis of real GDP and CO2 emissions in transitional countries. Sustainability, 9(4), 568. https://doi.org/10.3390/su9040568
  • Mubenga-Tshitaka, J. L., Muteba-Mwamba, J. W., Dikgang, J., & Gelo, D. (2021) Risk spill-over between climate variables and the agricultural commodity market in East Africa, ECONSTOR (Leibniz Information Centre For Economics) Working Paper Series. http://hdl.handle.net/10419/243160
  • Mupangwa, W., Love, D., & Twomlow, S. (2006). Soil-water conservation and rainwater harvesting strategies in the semi-arid Mzingwane Catchment Limpopo Basin Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 31(15–16), 893–900. https://doi.org/10.1016/j.pce.2006.08.042
  • Mutai, C. C., & Ward, M. N. (2000). East African rainfall and the tropical circulation/convection on intraseasonal to interannual timescales. American Meteorological Society, 13, 3915–3939. https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2
  • Nguyen, C. T., & Scrimgeour, F. (2022). Measuring the impact of climate change on agriculture in Vietnam. a Panel Ricardian Analysis, Agricultural Economics, 53, 37–51. https://doi.org/10.1111/agec.12677
  • Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., Urquhart, P. et al. (2014). Africa. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (pp.1202–1204). Cambridge Univ. Press WG2.
  • Ochieng, J., Kirimi, L., & Mathenge, M. (2016). Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS - Wageningen Journal of Life Sciences, 77(1), 71–78. https://doi.org/10.1016/j.njas.2016.03.005
  • Okumu, B., Kehbila, A. G., & Osano, P. (2021) A review of water-forest-energy-food security nexus data and assessment of studies in East Africa, Current Research in Environment Sustainability, 3, 100045, https://www.sciencedirect.com/science/article/pii/S2666049021000219
  • Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G., & Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 11(4), 306–312. https://doi.org/10.1038/s41558-021-01000-1
  • Ottman, M. J., Kimball, B. A., White, J. W., & Wall, G. W. (2012). Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agronomy Journal, 104(1), 7–16. https://doi.org/10.2134/agronj2011.0212
  • Ozdemir, D. (2022). The impact of climate change on agricultural productivity in Asian countries: a heterogeneous panel data approach. Environmental Science and Pollution Research, 29, 8205–8217. https://doi.org/10.1007/s11356-021-16291-2
  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286
  • Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61(s1), 653–670. https://doi.org/10.1111/1468-0084.61.s1.14
  • Pedroni, P. (2004). Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20(3), 597–625. https://doi.org/10.1017/S0266466604203073
  • Pesaran, M. H., 2004 . General diagnostic tests for cross section dependence in panels. University of Cambridge, Faculty of Economics, Cambridge Working Papers in Economics, No. 0435.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. Journal of the American Statistical Association, 94(446), 621–634. https://doi.org/10.1080/01621459.1999.10474156
  • Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79–113. https://doi.org/10.1016/0304-4076(94)01644-F
  • Pesaran, H. M., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐ section Independence. The Econometrics Journal, 11(1), 105–127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  • Regan, P. M., Kim, H., & Maiden, E. (2019). Climate change, adaptation, and agricultural output. Regional Environmental Change, 19(1), 113–123. https://doi.org/10.1007/s10113-018-1364-0
  • Rehman, A., Ma, H., & Ozturk, I. (2020). Decoupling the climatic and carbon dioxide emission influence to maize crop production in Pakistan. Air Quality Atmosphere & Health, 13(6), 695–707. https://doi.org/10.1007/s11869-020-00825-7
  • Sachs, J. D., & Warner, A. M. (1997). Sources of slow growth in African economies. Journal of African Economies, 6(3), 335–376. https://doi.org/10.1093/oxfordjournals.jae.a020932
  • Salahuddin, M., Gow, J., & Vink, N. (2020). Effects of environmental quality on agricultural productivity in sub Saharan African countries: A second generation panel based empirical assessment. Science of the Total Environment, 741, 140520. https://doi.org/10.1016/j.scitotenv.2020.140520
  • Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh. an Analysis of Time Series Data, Agricultural Systems, 112, 11–16. https://doi.org/10.1016/j.agsy.2012.06.004
  • Schreck, C. J., & Semazzi, F. H. M. (2004). Variability of the recent climate of Eastern Africa. International Journal of Climatology, 24(6), 681–701. https://doi.org/10.1002/joc.1019
  • Seo, N. S. (2013). An essay on the impact of climate change on US agriculture: Weather fluctuations, climatic shifts, and adaptation strategies. Climatic Change, 121(2), 115–124. https://doi.org/10.1007/s10584-013-0839-8
  • Severen, C., Costello, C., & Deschênes, O. (2018). A forward-looking Ricardian approach. Do Land Markets Capitalize Climate Change Forecasts? Journal of Environmental Economics and Management, 89, 235–254. https://doi.org/10.1016/j.jeem.2018.03.009
  • Simões, M. C. N. (2011). Education Composition and Growth. A Pooled Mean Group Analysis of OECD Countries, Panaeconomicus, 4, 455–471. https://doi.org/10.2298/PAN1104454S
  • song, Y., Zhang, B., Wang, J., & Kwek, K. (2022). The impact of climate change on China’s agricultural green total factor productivity. Technological Forecasting & Social Change, 185, 122054. https://doi.org/10.1016/j.techfore.2022.122054
  • Swamy, P. A. V. B. (1970). Efficient inference in a random coefficient regression model. Econometrica, 38(2), 311–323. https://www.jstor.org/stable/1913012
  • Tadross, M., Jack, C., & Hewitson, B. (2005). On RCM-based projections of change in Southern African summer climate. Geophysical Research Letters, 32(23), L23713. https://doi.org/10.1029/2005GL024460
  • Taylor, M. P., & Sarno, L. (1998). The behavior of real exchange rates during the post-Bretton Woods period. Journal of International Economics, 46(2), 281–312. https://doi.org/10.1016/S0022-1996(97)00054-8
  • Teshome, M. (2016). Rural households’ agricultural land vulnerability to climate change in Dembia Woreda, Northwest Ethiopia. Environmental Systems Research, 3, 5–14. https://doi.org/10.1186/s40068-016-0064-3
  • Waithaka, M., Nelson, G. C., Thomas, T. S., & Kyotalimye, M. (2013) East Africa africulture and climate change (a comprehensive analysis) International Foot Policy Research Institute: Washington, DC, USA.
  • Westerlund, J., & Edgerton, D. L. (2007). A panel bootstrap cointegration test. Economics Letters, 97(3), 185–190. https://doi.org/10.1016/j.econlet.2007.03.003
  • Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Prasad, P. V. V. (2000). Temperature variability and the yield of annual crops. Ecosystems and Environment, 82, 159–167. https://doi.org/10.1016/S0167-8809(00)00224-3
  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402
  • Xia, Y. (2021). Chinese investment in East Africa: History. Status,and Impacts, Journal of Chinese Economic and Business Studies, 19(4), 269–293. https://doi.org/10.1080/14765284.2021.1966733
  • Zaied, Y. B., & Cheikh, N. B. (2015). Long-run vs short-run analysis of climate change impacts on agricultural crops. Environmental Modeling & Assessment, 20(3), 259–271. https://doi.org/10.1007/s10666-014-9432-4