80
Views
0
CrossRef citations to date
0
Altmetric
Development Economics

Panel threshold effect of climate variability on agricultural output in Eastern African countries

, , &
Article: 2345437 | Received 13 Jul 2022, Accepted 16 Apr 2024, Published online: 21 Jun 2024

References

  • Abbas, S., & Mayo, Z. A. (2021). Impact of temperature and rainfall on rice production in Punjab, Pakistan. Environment, Development and Sustainability, 23(2), 1706–1728. https://doi.org/10.1007/s10668-020-00647-8
  • Abdi, A. H., Warsame, A. A., & Sheik‑Ali, I. A. (2022). Modelling the impacts of climate change on cereal crop production in East Africa: Evidence from heterogeneous panel cointegration analysis. Environmental Science and Pollution Research, 30(12), 35246–35257. https://doi.org/10.1007/s11356-022-24773-0
  • Abraha-Kahsay, G., & Hansen, L. G. (2016). The effect of climate change and adaptation policy on agriculture production in Eastern Africa. Ecological Economics, 121, 54–64. https://doi.org/10.1016/j.ecolecon.2015.11.016
  • Amare, M., Jensen, N. D., Shiferaw, B., & Cissé, J. D. (2018). Rainfall shocks and agricultural productivity: Implication for rural household consumption. Agricultural Systems, 166, 79–89. https://doi.org/10.1016/j.agsy.2018.07.014
  • Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006
  • Antle, J. M. (1983). Testing the stochastic structure of production: A flexible moment based approach. Journal of Business & Economic Statistics, 1(3), 192–201. https://doi.org/10.2307/1391337
  • Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error- components models. Journal of Econometrics, 68(1), 29–51. https://doi.org/10.1016/0304-4076(94)01642-D
  • Bahaga, T. K., Mengistu, T. G., Kucharski, F., & Diro, G. T. (2014). Potential predictability of the sea-surface temperature forced equatorial East African short rains interannual variability in the 20th century. Quarterly Journal of the Royal Meteorological Society, 141(686), 16–26. https://doi.org/10.1002/qj.2338
  • Barrios, S., Ouattara, B., & Strobl, E. (2008). The impact of climatic change on agricultural production: Is it different for Africa? Food Policy. 33(4), 287–298. https://doi.org/10.1016/j.foodpol.2008.01.003
  • Bedeke, S. B. (2023). Climate change vulnerability and adaptation of crop producers in sub-Saharan Africa: A review on concepts, approaches and methods. Environment, Development and Sustainability, 25(2), 1017–1051. https://doi.org/10.1007/s10668-022-02118-8
  • Blanc, E. (2012). The impact of climate change on crop yields in sub-Saharan Africa. American Journal of Climate Change, 01(01), 1–13. https://doi.org/10.4236/ajcc.2012.11001
  • Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143. https://doi.org/10.1016/S0304-4076(98)00009-8
  • Cabas, J., Weersink, A., & Olale, E. (2009). Crop yield response to economic, site and climatic variable. Climatic Change, 101(3–4), 599–616. https://doi.org/10.1007/s10584-009-9754-4
  • Caner, M., & Hansen, B. E. (2004). Instrumental variable estimation of a threshold model. Econometric Theory, 20(05), 813–843. https://doi.org/10.1017/S0266466604205011
  • Chandio, A. A., Jiang, Y., Rehman, A., & Rau, A. (2020). Short and long-run impacts of climate change on agriculture: An empirical evidence from China. International Journal of Climate Change Strategies and Management, 12(2), 201–221. https://doi.org/10.1108/IJCCSM-05-2019-0026
  • Chandio, A. A., Jiang, Y., Fatima, T., Ahmad, F., Ahmad, M., & Li, J. (2022). Assessing the impacts of climate change on cereal production in Bangladesh: Evidence from ARDL modeling approach. International Journal of Climate Change Strategies and Management, 14(2), 125–147. https://doi.org/10.1108/IJCCSM-10-2020-0111
  • Chen, S., & Gong, B. (2021). Response and adaptation of agriculture to climate change: Evidence from China. Journal of Development Economics, 148, 102557. https://doi.org/10.1016/j.jdeveco.2020.102557
  • Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249–272. https://doi.org/10.1016/S0261-5606(00)00048-6
  • Conway, D., Allison, E., Felstead, R., & Goulden, M. (2005). Rainfall variability in East Africa: Implications for natural resources management and livelihoods. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 363(1826), 49–54. https://doi.org/10.1098/rsta.2004.1475
  • Conway, D., & Schipper, E. L. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21(1), 227–237. https://doi.org/10.1016/j.gloenvcha.2010.07.013
  • Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K. A., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P., Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M., Gutt, J., Hindell, M. A., Hofmann, E. E., Hosie, G. W., Iida, T., … Ziegler, P. (2014). Climate change and Southern Ocean ecosystems I: Howchanges in physical habitats directly affect marine biota. Global Change Biology, 20(10), 3004–3025.https://doi.org/10.1111/gcb.12623
  • Espoir, D. K., Mudiangombe, B. M., Bannor, F., Sunge, R., & Mubenga-Tshitaka, J. L. (2022). CO2 emissions and economic growth: Assessing the heterogeneous effects across climate regimes in Africa. The Science of the Total Environment, 804, 150089. https://doi.org/10.1016/j.scitotenv.2021.150089
  • FAO. (2008). Agriculture mechanization in Africa time for action: planning investment for enhanced agricultural productivity. In Report of an Expert Group Meeting January 2008. FAO. http://www.fao.org/3/k2584e/k2584e.pdf
  • FAO. (2015). The economic lives of smallholder farmers: Analysis based on household data from nine countries. FAO. http://www.fao.org/3/a-i5251e.pdf
  • FAOSTAT. (2011). FAO statistical database. https://www.fao.org/faostat/en/#data/QV
  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2020). Analysis of climate variability and droughts in East Africa using high-resolution climate data products. Global and Planetary Change, 186, 103130. https://doi.org/10.1016/j.gloplacha.2020.103130
  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Long-term trends in rainfall and temperature using high- resolution climate datasets in East Africa. Scientific Reports, 9(1), 11376. https://doi.org/10.1038/s41598-019-47933-8
  • Gomez-Zavaglia, A., Mejuto, J. C., & Simal-Gandara, J. (2020). Mitigations of emerging implications of climate change on food production systems. Food Research International (Ottawa, Ont.), 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256
  • Gommes, R., & Petrassi, F. (1996). Rainfall variability and drought in sub-Saharan Africa, Environment and Natural Resources Service, FAO Research, Extension and Training Division. http://www.fao.org/3/au042e/au042e.pdf.
  • Hayami, Y., & Ruttan, V. W. (1970). Agriculture productivity differences among countries. American Economic Review, 60(5), 895–911. https://www.jstor.org/stable/1818289
  • Huong, N. T., Bo, Y. S., & Fahad, S. (2019). Economic impact of climate change on agriculture using Ricardian approach: A case of northwest Vietnam. Journal of the Saudi Society of Agricultural Sciences, 18(4), 449–457. https://doi.org/10.1016/j.jssas.2018.02.006
  • Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345–368. https://doi.org/10.1016/S0304-4076(99)00025-1
  • Intergovernmental Panel on Climate Change (IPCC). (2007). Contribution of working group I to the fourth assessment report. Cambridge University Press.
  • Kansiime, M. K., Van Asten, P., & Sneyers, K. (2018). Farm diversity and resource use efficiency: Targeting agriculture policy interventions in East Africa farming systems. NJAS: Wageningen Journal of Life Sciences, 85(1), 32–41. https://doi.org/10.1016/j.njas.2017.12.001
  • Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5
  • Kremer, S., Bick, A., & Nautz, D. (2013). Inflation and growth: New evidence from a dynamic panel threshold analysis. Empirical Economics, 44(2), 861–878. https://www.econstor.eu/bitstream/10419/39331/1/60792313X.pdf https://doi.org/10.1007/s00181-012-0553-9
  • Lachaud, M. A., Bravo-Ureta, B. E., & Ludena, C. E. (2022). Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC). Agricultural Economics, 53(2), 321–332. https://doi.org/10.1111/agec.12682
  • Lal, M. (2011). Implications of climate change in sustained agricultural productivity in South Asia. Regional Environmental Change, 11(S1), 79–94. https://doi.org/10.1007/s10113-010-0166-9
  • Levin, A., Chien-Fu, C., & Chia-Shang, J. C. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1–24. https://doi.org/10.1016/S0304-4076(01)00098-7
  • Lippert, C., Krimly, T., & Aurbacher, J. (2009). A Ricardian analysis of the impact of climate change on agriculture in Germany. Climatic Change, 97(3–4), 593–610. https://doi.org/10.1007/s10584-009-9652-9
  • Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443–1452. https://doi.org/10.1016/j.agrformet.2010.07.008
  • Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42–45. https://doi.org/10.1038/nclimate1043
  • Lowder, S. K., Sánchez, M. V., & Bertini, R. (2019). Farms, family farms, farmland distribution and farm labour: What do we know today? In FAO agricultural development economics economics working paper 19-08. FAO.
  • McCarl, B. A., Villavicencio, X., & Wu, X. (2008). Climate change and future analysis: is stationary dying? American Journal of Agricultural Economics, 90(5), 1241–1247. https://www.jstor.org/stable/20492379 https://doi.org/10.1111/j.1467-8276.2008.01211.x
  • Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The impact of global warming on agriculture: A Ricardian analysis. The American Economic Review, 84(4), 753–771. https://www.jstor.org/stable/2118029
  • Mendelsohn, R. (2009). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1(1), 5–19. https://doi.org/10.1080/19390450802495882
  • Mendelsohn, R. (2014). The impact of climate change on agriculture in Asia. Journal of Integrative Agriculture, 13(4), 660–665. https://doi.org/10.1016/S2095-3119(13)60701-7
  • Mishra, D., & Sahu, N. C. (2014). Economic impact of climate change on agriculture sector of Coastal Odisha. APCBEE Procedia, 10, 241–245. https://doi.org/10.1016/j.apcbee.2014.10.046
  • Molua, E. L., & Lambi, C. M. (2007). The economic impact of climate change on agriculture in Cameroon. The World Bank Policy Research Working, 4364. Development Research Group Sustainable Rural and Urban Development Team, The World Bank. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1016260.
  • Mubenga-Tshitaka, J. L., Dikgang, J., Muteba Mwamba, J. W., & Gelo, D. (2023). Climate variability impacts on agricultural output in East Africa. Cogent Economics & Finance, 11(1), 2181281. https://doi.org/10.1080/23322039.2023.2181281
  • Ngoma, H., Finn, A., & Kabisa, M. (2023). Climate shocks, vulnerability, resilience and livelihoods in rural Zambia. Climate and Development, 16(6), 490–501. https://doi.org/10.1080/17565529.2023.2246031
  • Nguyen, C. T., & Scrimgeour, F. (2022). Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis. Agricultural Economics, 53(1), 37–51. https://doi.org/10.1111/agec.12677
  • Niang, A., Amrani, F., Salhi, M., Grelu, P., & Sanchez, F. (2014). Rains of solitons in a figure of eight passive mode-locked fiber laser. Applied Physics B, 116(3), 771–775. https://doi.org/10.1007/s00340-014-5760-y
  • Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426. https://doi.org/10.2307/1911408
  • Noy, I. (2009). The macroeconomic consequences of disasters. Journal of Development Economics, 88(2), 221–231. https://doi.org/10.1016/j.jdeveco.2008.02.005
  • Owusu, K., & Waylen, P. R. (2013). Identification of historic shifts in daily rainfall regime, Wenchi, Ghana. Climatic Change, 117(1–2), 133–147. https://doi.org/10.1007/s10584-013-0692-9
  • Pickson, R. B., He, G., & Boateng, E. (2022). Impacts of climate change on rice production: Evidence from 30 Chinese provinces. Environment, Development and Sustainability, 24(3), 3907–3925. https://doi.org/10.1007/s10668-021-01594-8
  • Poudel, S., & Kotani, K. (2013). Climatic impacts on crop yield and its variability in Nepal: Do they vary across seasons and altitude? Climatic Change, 116(2), 327–355. https://doi.org/10.1007/s10584-012-0491-8
  • Regan, P. M., Kim, H., & Maiden, E. (2019). Climate change, adaptation, agricultural output. Regional Environmental Change, 19(1), 113–123. https://doi.org/10.1007/s10113-018-1364-0
  • Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal: Promoting Communications on Statistics and Stata, 9(1), 86–136. https://doi.org/10.1177/1536867X0900900106
  • Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., & Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79–131). Cambridge University Press.
  • Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 151(4), 449–460. https://doi.org/10.1016/j.agrformet.2010.12.002
  • Rui-Li, L., & Geng, S. (2013). Impact of climate change on agriculture and adaptive strategies in China. Journal of Integrative Agriculture, 12(8), 1402–1408. https://doi.org/10.1016/S2095-3119(13)60552-3
  • Runge, C. F., Senauer, B., Pardey, P. G., & Rosegrant, N. W. (2004). Ending hunger in Africa: prospects for the small farmer. International Food Policy Research Institute (IFRI).
  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15594–15598. https://doi.org/10.1073/pnas.0906865106
  • Schreck, C. Z., & Semazzi, F. H. (2004). Variability of the climate of Eastern Africa. International Journal of Climatology, 24(6), 681–701. https://doi.org/10.1002/joc.1019
  • Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. https://doi.org/10.1088/1748-9326/5/1/014010
  • Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A., & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research International, 28(12), 14211–14232. https://doi.org/10.1007/s11356-021-12649-8
  • Toret, A., Bassu, S., Asseng, S., Zampieri, M., Ceglar, A., & Royo, C. (2022). Climate service driven adaptation may alleviate the impact of climate change in agriculture. Communications Biology, 5(1), 1235. https://doi.org/10.1038/s42003-022-04189-9
  • Van den Broeck, G., & Kilic, T. (2018). Dynamic of off-farm employment in sub-Saharan Africa: a gender perspective. eLibrary, World Bank. https://elibrary.worldbank.org/doi/pdf/10.1596/1813-9450-8540
  • Victor, U. S., Srivasta, N. N., Subba-Rao, A. V. M., & Ramana-Roa, B. V. (1996). Managing the impact of seasonal rainfall variability through response farming at a semi-arid tropical location. Current Science, 71(5), 392–397. https://doi.org/10.1016/j.atmosres.2019.03.023
  • Wang, J., Mendelsohn, R., Dinar, A., Huang, J., Rozelle, S., & Zhang, L. (2009). The impact of climate change on China’s agriculture. Agricultural Economics, 40(3), 323–337. https://doi.org/10.1111/j.1574-0862.2009.00379.x
  • Ward, P. S., Florax, R. J., & Flores-Lagunes, A. (2014). Climate change and agriculture productivity in sub-Saharan Africa, a spacial sample selection model. European Review of Agricultural Economics, 41(2), 199–226. https://doi.org/10.1093/erae/jbt025
  • Warsame, A. A., Sheik-Ali, I. A., Ali, A. O., & Sarkodie, S. A. (2021). Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environmental Science and Pollution Research International, 28(16), 19838–19850. https://doi.org/10.1007/s11356-020-11739-3
  • Wichern, J., Van Wijk, M. T., Descheemaeker, K., Frelat, R., Van Asten, P. J. A., & Giller, K. E. (2017). Food availability and livelihood strategies among rural households across Uganda. Food Security, 9(6), 1385–1403. https://doi.org/10.1007/s12571-017-0732-9
  • World Bank. (2007). World Development Report, 2008: Agriculture for Development. Oxford University Press.
  • Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT Press.
  • You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat production in China. Agricultural and Forest Meteorology, 149(6–7), 1009–1014. https://doi.org/10.1016/j.agrformet.2008.12.004