125
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Radiative Transfer in Half Spaces of Arbitrary Dimension

&

References

  • Abramowitz, M., and Stegun, I. A. (Eds.). 1972. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. 9 ed. Illinois: Dover.
  • Abu-Shumays, I. K. 1967. Generating functions and reflection and transmission functions. J. Math. Anal. Appl. 18(3): 453–71. doi:10.1016/0022-247X(67)90038-8
  • Audic, S., and H. Frisch. 1993. Monte-Carlo simulation of a radiative transfer problem in a random medium: Application to a binary mixture. J. Quant. Spectrosc. Radiat. Transf. 50(2): 127–47. doi:10.1016/0022-4073(93)90113-V
  • Bal, G., V. Freilikher, G. Papanicolaou, and L. Ryzhik. 2000. Wave transport along surfaces with random impedance. Phys. Rev. B. 62(10): 6228. doi:10.1103/PhysRevB.62.6228
  • Birkhoff, G., and I. Abu-Shumays. 1969. Harmonic solutions of transport equations. J. Math. Anal. Appl. 28(1): 211–21. doi:10.1016/0022-247X(69)90123-1
  • Birkhoff, G., and I. K. Abu-Shumays. 1970. Exact analytic solutions of transport equations. J. Math. Anal. Appl. 32(3): 468–81. doi:10.1016/0022-247X(70)90271-4
  • Bitterli, B. 2015. The secret life of photons: Simulating 2D light transport. Accessed December, 2018. doi:10.1145/3355089.3356578
  • Bouwkamp, C. J. 1954. Diffraction theory. Rep. Prog. Phys. 17(1): 35. doi:10.1088/0034-4885/17/1/302
  • Busbridge, I. W. 1957. On the H-functions of S. Chandrasekhar. Q J. Math. 8(1): 133–40. doi:10.1093/qmath/8.1.133
  • Busbridge, I. W. 1960. The mathematics of radiative transfer. Cambridge: Cambridge University Press.
  • Carlstedt, J. L., and T. W. Mullikin. 1966. Chandrasekhar’s X-and Y-functions. APJS. 12: 449. doi:10.1086/190133
  • Case, K. M. 1957. On Wiener-Hopf equations. Ann. Phys. (USA) 2(4): 384–405. doi:10.1016/0003-4916(57)90027-1
  • Case, K. M., and P. F. Zweifel. 1967. Linear transport theory. Boston: Addison-Wesley,
  • Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1): 1–89.doi:10.1103/RevModPhys.15.1
  • Chandrasekhar, S. 1960. Radiative transfer. Illinois: Dover.
  • Chwolson, O. D. 1889. Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull. Acad. Imp. Sci. St. Petersburg 33: 221–56.
  • Ciesielski, Z., and S. J. Taylor. 1962. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Transac. Am. Math. Soc. 103(3): 434–50. doi:10.2307/1993838
  • Comtet, A., and Y. Tourigny. 2011. Excursions of diffusion processes and continued fractions, in: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Ann. Inst. Henri Poincaré Probab. Statist. 47(3): 850–74. doi:10.1214/10-AIHP390
  • d’Eon, E. 2013. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear Boltzmann transport in arbitrary dimension. Transport Theory Statist. Phys. 42(6-7): 237–97. doi:10.1080/00411450.2014.910231
  • d’Eon, E. 2014. A dual-beam 3D searchlight BSSRDF. ACM SIGGRAPH 2014 Talks 65(1): 1. URL https://doi.org/http://doi.acm.org/10.1145/2614106.2614140.
  • d’Eon, E. 2016. A hitchhiker’s guide to multiple scattering, v0.1.3, (self published). http://www.eugenedeon.com/hitchhikers.
  • d’Eon, E. 2019. A reciprocal formulation of nonexponential radiative transfer. 2: Monte Carlo estimation and diffusion approximation. J. Comput. Theor. Trans. 49: 4530–33.
  • d’Eon, E. In preparation. A reciprocal formulation of nonexponential radiative transfer. 4: Half spaces.
  • d’Eon, E., and M. M. R. Williams. 2018. Isotropic scattering in a Flatland Half-Space. J. Comput. Theor. Trans. 47(1-3): 226–45. doi:10.1080/23324309.2018.1544566
  • Daniele, V. G., and R. Zich. 2014. The Wiener-Hopf method in electromagnetics. Delhi: Scitech Publishing.
  • Davis, A. B., and F. Xu. 2014. A generalized linear transport model for spatially correlated stochastic media. J. Comput. Theor. Transp. 43(1-7): 474–514. doi:10.1080/23324309.2014.978083
  • Davison, B. 1957. Neutron transport theory. Oxford: Oxford University Press.
  • Dutka, J. 1985. On the problem of random flights. Arch. Hist. Exact Sci. 32(3–4): 351–75. doi:10.1007/BF00348451
  • Fock, V. 1944. Some integral equations of mathematical physics. In: Doklady AN SSSR, vol. 26, 147–51, http://mi.mathnet.ru/eng/msb6183.
  • Fournier, J.-D., and U. D. Frisch. 1978. d-dimensional turbulence. Phys. Rev. A 17(2): 747. doi:10.1103/PhysRevA.17.747
  • Fox, C. 1961. A solution of Chandrasekhar’s integral equation. Transac. Am. Math Soc. 99(2): 285–91. doi:10.2307/1993398
  • Frankel, S., and E. Nelson. 1953. Methods of treatment of displacement integral equations. Tech. Rep. AECD-3497; LADC-79, Los Alamos Scientific Lab. https://doi.org/10.2172/4371404.
  • Frisch, H. 1988. A Cauchy integral equation method for analytic solutions of half-space convolution equations. J. Quant. Spectrosc. Radiat. Transf. 39(2): 149–62. doi:10.1016/0022-4073(88)90082-9
  • Frisch, U., and H. Frisch. 1995. Universality of escape from a half-space for symmetrical random walks. In: Lévy flights and related topics in physics. Berlin: Springer, 262–68. https://doi.org/10.1007/3-540-59222-9_39.
  • Gorodnichev, E. E., S. L. Dudarev, and D. B. Rogozkin. 1989. Coherent backscattering enhancement under conditions of weak wave localization in disordered 3D and 2D systems. Soviet Physic. JETP. 69(3): 481–90.
  • Gorodnichev, E. E., S. L. Dudarev, and D. B. Rogozkin. 1990. Coherent wave backscattering by random medium. Exact solution of the albedo problem. Physics Lett. A. 144(1): 48–54. doi:10.1016/0375-9601(90)90047-R
  • Grosjean, C. C. 1953. Solution of the non-isotropic random flight problem in the k-dimensional space. Physica 19(1-12): 29–45. doi:10.1016/S0031-8914(53)80004-2
  • Grzesik, J. A. 2018. Radiative albedo from a linearly fibered half-space. Eur. Phys. J. Plus. 133(5): 178. doi:10.1140/epjp/i2018-12004-4
  • Hanrahan, P., and W. Krueger. 1993. Reflection from layered surfaces due to subsurface scattering. Proceedings of ACM SIGGRAPH 1993: 164–74. https://doi.org/10.1145/166117.166139,
  • Hoogenboom, J. E. 2008. The two-direction neutral-particle transport model: A useful tool for research and education. Transport Theory Stat. Phys. 37(1): 65–108. doi:10.1080/00411450802271791
  • Hopf, E. 1934. Mathematical problems of radiative equilibrium. Cambridge: Cambridge University Press.
  • Inayat-Hussain, A. A. 1987. New properties of hypergeometric series derivable from Feynman integrals II. A generalisation of the H function. J. Phys. A: Math. Gen. 20(13): 4119. doi:10.1088/0305-4470/20/13/020
  • Ivanov, V. 1994. Resolvent method: Exact solutions of half-space transport problems by elementary means. Astron. Astrophys. 286: 328–37.
  • Ivanov, V. V. 1973. Transfer of radiation in spectral lines. US Government Printing Office 385.
  • Jakeman, E., and P. N. Pusey. 1976. A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propagat. 24(6): 806–14. doi:10.1109/TAP.1976.1141451
  • Jarosz, W., V. Schönefeld, L. Kobbelt, and H. W. Jensen. 2012. Theory, analysis and applications of 2D global illumination. ACM Transac. Graphics. 31 (5): 125. doi:10.1145/2231816.2231823
  • Jensen, H. W., S. R. Marschner, M. Levoy, and P. Hanrahan. 2001. A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, 511–18.
  • Jeanson, R., C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz. 2005. Self-organized aggregation in cockroaches. Animal Behaviour 69(1): 169–80. doi:10.1016/j.anbehav.2004.02.009
  • Kelley, B. W., and E. W. Larsen. 2015. A consistent 2D/1D approximation to the 3D neutron transport equation. Nucl. Eng. Des. 295: 598–614. doi:10.1016/j.nucengdes.2015.07.026
  • Kingman, J. F. C. 1963. Random walks with spherical symmetry. Acta Math. 109(0): 11–53. doi:10.1007/BF02391808
  • Kohler, W., and G. C. Papanicolaou. 1973. Power statistics for wave propagation in one dimension and comparison with radiative transport theory. J. Math. Phys. 14(12): 1733–45. doi:10.1063/1.1666247
  • Kolesnik, A. D. 2008. Random motions at finite speed in higher dimensions. J. Stat. Phys. 131(6): 1039–65. doi:10.1007/s10955-008-9532-0
  • Kolesnik, A. D., and E. Orsingher. 2005. A planar random motion with an infinite number of directions controlled by the damped wave equation. J. Appl. Probability 42(04): 1168–82. doi:10.1239/jap/1134587824
  • Krein, M. G. 1962. Integral equations on a half-line with kernel depending upon the difference of the arguments. Amer. Math. Soc. Transl. 22: 163–288.
  • Krein, M. G. 1983. On nonlinear integral equations which play a role in the theory of Wiener-Hopf equations. I, II, in: Topics in differential and integral equations and operator theory. Berlin: Springer, 173–242. https://doi.org/10.1007/978-3-0348-5416-0_3
  • Křivánek, J., and E. d’Eon. 2014. A Zero-variance-based sampling scheme for Monte Carlo subsurface scattering. ACM SIGGRAPH 2014 Talks 66(1): 1. http://doi.acm.org/10.1145/2614106.2614138.
  • Kubelka, P. 1931. Ein Beitrag zur Optik der Farbanstriche (Contribution to the optics of paint). Zeitschrift fur technische Physik 12: 593–601.
  • Kulczycki, T., M. Kwaśnicki, J. Małecki, and A. Stos. 2010. Spectral properties of the Cauchy process on half-line and interval. Proc. London Math. Soc. 101(2): 589–622. doi:10.1112/plms/pdq010
  • Kuščer, I., and F. Shure. 1967. Closure relations for the eigenfunctions of the one-speed transport equation. J. Math. Phys. 8(4): 823–26. doi:10.1063/1.1705284
  • Kuščer, I., N. J. McCormick, and G. C. Summerfield. 1964. Orthogonality of Case’s eigenfunctions in one-speed transport theory. Ann. Phys. (USA) 30(3): 411–21. doi:10.1016/0003-4916(64)90127-7
  • Larsen, E. W., and R. Vasques. 2011. A generalized linear Boltzmann equation for non-classical particle transport. J. Quant. Spectrosc. Radiat. Transf. 112(4): 619–31. doi:10.1016/j.jqsrt.2010.07.003
  • Leuthäuser, K. D. 1968. Der extrapolierte Endpunkt benachbarter Halbräume. Atomkernenergie 13(6): 385–86.
  • Liemert, A., and A. Kienle. 2011. Radiative transfer in two-dimensional infinitely extended scattering media. J. Phys. A: Math. Theor. 44(50): 505206. doi:10.1088/1751-8113/44/50/505206
  • Liemert, A., and A. Kienle. 2012. Analytical approach for solving the radiative transfer equation in two-dimensional layered media. J. Quant. Spectrosc. Radiat. Transf. 113(7): 559–64. doi:10.1016/j.jqsrt.2012.01.013
  • Machida, M. 2016. The radiative transport equation in flatland with separation of variables. J. Math. Phys. 57(7): 073301. doi:10.1063/1.4958976
  • Majumdar, S. N. 2010. Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records. Physica A: Statis. Mech. Appl. 389(20): 4299–316. doi:10.1016/j.physa.2010.01.021
  • Majumdar, S. N., A. Comtet, and R. M. Ziff. 2006. Unified solution of the expected maximum of a discrete time random walk and the discrete flux to a spherical trap. J. Stat. Phys. 122(5): 833–56. doi:10.1007/s10955-005-9002-x
  • Marschner, S. R., H. W. Jensen, M. Cammarano, S. Worley, and P. Hanrahan. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22(3): 780–91. doi:10.1145/882262.882345
  • Martelli, F., A. Sassaroli, A. Pifferi, A. Torricelli, L. Spinelli, and G. Zaccanti. 2007. Heuristic Green’s function of the time dependent radiative transfer equation for a semi-infinite medium. Opt. Express. 15(26): 18168–75. doi:10.1364/OE.15.018168
  • McCormick, N. J. 1969. Neutron transport for anisotropic scattering in adjacent half-spaces. I. Theory. Nuclear Science and Engineering 37(2): 243–51. doi:10.13182/NSE69-A20684
  • McCormick, N. J. 2015. Angular and spatial moments for half-space albedo transport problems. Ann. Nucl. Energy 86: 72–79. doi:10.1016/j.anucene.2014.12.021
  • McCormick, N. J., and I. Kuščer. 1973. Singular eigenfunction expansions in neutron transport theory, in: E. Henley, J. Lewins (Eds.), Advances in nuclear science and technology. vol. 7. Cambridge: Academic Press, 181–282. doi:10.1016/B978-0-12-029307-0.50010-X
  • McDowall, S., P. Stefanov, and A. Tamasan. 2010 Stability of the gauge equivalent classes in inverse stationary transport. Inverse Problems 26 (2). doi:10.1088/0266-5611/26/2/025006
  • Meador, W. E., and W. R. Weaver. 1980. Two-stream approximations to radiative transfer in planetary atmospheres- A unified description of existing methods and a new improvement. J. Atmos. Sci. 37(3): 630–43. ISSN 1520-0469. doi:10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2
  • Mendelson, M. R., and G. C. Summerfield. 1964. One-speed neutron transport in two adjacent half-spaces. J. Math. Phys. 5(5): 668–74. doi:10.1063/1.1704161
  • Meylan, M. H., and D. Masson. 2006. A linear Boltzmann equation to model wave scattering in the marginal ice zone. Ocean Modelling 11(3-4): 417–27. doi:10.1016/j.ocemod.2004.12.008
  • Mishchenko, M. I., J. M. Dlugach, and E. G. Yanovitskij. 1992. Multiple light scattering by polydispersions of randomly distributed, perfectly-aligned, infinite Mie cylinders illuminated perpendicularly to their axes. J. Quant. Spectrosc. Radiat. Transf. 47(5): 401–10. doi:10.1016/0022-4073(92)90041-2
  • Monin, A. S. 1956. A statistical interpretation of the scattering of microscopic particles. Theory Probab. Appl. 1(3): 298–311. doi:10.1137/1101024
  • Mullikin, T. W. 1968. Some probability distributions for neutron transport in a half-space. J Appl Probab 5(2): 357–74. doi:10.2307/3212258
  • Muskhelishvili, N. I. 1958. Singular integral equations: Boundary problems of function theory and their application to mathematical physics. Wolters-Noordhoff. doi:10.1007/978-94-009-9994-7.
  • Paasschens, J. C. J. 1997. Solution of the time-dependent Boltzmann equation. Phys. Rev. E. 56(1): 1135–41. doi:10.1103/PhysRevE.56.1135
  • Placzek, G., and W. Seidel. 1947. Milne’s problem in transport theory. Phys. Rev. 72(7): 550–55. doi:10.1103/PhysRev.72.550
  • Reimberg, P. H. F., and L. R. Abramo. 2015. Random flights through spaces of different dimensions. J. Math. Phys. 56(1): 013512. doi:10.1063/1.4906808
  • Rossetto, V. 2017. Space–time domain velocity distributions in isotropic radiative transfer in two dimensions. J. Phys. A: Math. Theor. 50(16): 165001. doi:10.1088/1751-8121/aa5f66
  • Sato, H., M. C. Fehler, and T. Maeda. 2012. Seismic wave propagation and scattering in the heterogeneous earth. Vol. 496. Berlin: Springer. doi:10.1007/978-3-540-89623-4.
  • Schuster, A. 1905. Radiation through a foggy atmosphere. APJ. 21: 1. doi:10.1086/141186
  • Sears, V. F. 1975. Slow-neutron multiple scattering. Adv. Phys. 24(1): 1–45. doi:10.1080/00018737500101361
  • Siewert, C. E. 1980. On computing eigenvalues in radiative transfer. J. Math. Phys. 21(9): 2468–70. doi:10.1063/1.524684
  • Smedley-Stevenson, R. 2012. A new analytic solution of the one-speed neutron transport equation for adjacent half-spaces with isotropic scattering. Ann. Nucl. Energy 46: 218–31. doi:10.1016/j.anucene.2012.03.034
  • Stewart, J. C., I. Kuščer, and N. J. McCormick. 1966. Equivalence of special models in energy-dependent neutron transport and nongrey radiative transfer. Ann. Phys. (USA) 40(2): 321–33. doi:10.1016/0003-4916(66)90030-3
  • van Rossum, M. C. W., and T. M. Nieuwenhuizen. 1999. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71(1): 313–71. ISSN 1539-0756. doi:10.1103/RevModPhys.71.313
  • Vynck, K., M. Burresi, F. Riboli, and D. S. Wiersma. 2012. Photon management in two-dimensional disordered media. Nature Mater. 11(12): 1017. doi:10.1038/nmat3442
  • Watanabe, S., and T. Watanabe. 1970. Convergence of isotropic scattering transport process to Brownian motion. Nagoya Math. J. 40: 161–71. doi:10.1017/S0027763000013933
  • Williams, M. M. R. 2005. The Milne problem with Fresnel reflection. J. Phys. A: Math. Gen. 38(17): 3841. doi:10.1088/0305-4470/38/17/009
  • Williams, M. M. R. 2012. A simple method for calculating the moments of the Chandrasekhar H function. Ann. Nucl. Energy 46: 232–33. doi:10.1016/j.anucene.2012.03.030
  • Wing, G. M. 1962. An introduction to transport theory. New Jershey: Wiley.
  • Yang, X.-S., and S. Deb. 2009. Cuckoo search via Lévy flights, in: Nature & Biologically Inspired Computing, NaBIC 2009. World Congress on, IEEE, 210–14, doi:10.1109/NABIC.2009.5393690.
  • Zoia, A., E. Dumonteil, and A. Mazzolo. 2011. Collision densities and mean residence times for d-dimensional exponential flights. Phys. Rev. E. 83(4): 041137. doi:10.1103/PhysRevE.83.041137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.