649
Views
0
CrossRef citations to date
0
Altmetric
Article

Linear Transport in Porous Media

, & ORCID Icon

References

  • Amagai, K., M. Yamakawa, M. Machida, and Y. Hatano. 2020. The linear Boltzmann equation in column experiments of porous media. Transp. Porous Med. 132 (2):311–31.
  • Barichello, L. B. 2011. Explicit formulations for radiative transfer problems. In Thermal measurements and inverse techniques, ed. H. R. B. Orlande, O. Fudym, D. Maillet, and R. M. Cotta. Boca Raton, FL: CRS Press.
  • Barichello, L. B., and C. E. Siewert. 1999a. A discrete-ordinates solution for a non-grey model with complete frequency redistribution. J. Quant. Spec. Rad. Trans. 62 (6):665–75.
  • Barichello, L. B., and C. E. Siewert. 1999b. A discrete-ordinates solution for a polarization model with complete frequency redistribution. Astro. J. 513 (1):370–82.
  • Barichello, L. B., and C. E. Siewert. 2001. A new version of the discrete-ordinates method. Proceedings 2 International Conference on Computational Heat and Mass Transfer, Rio de Janeiro, 22–26.
  • Barichello, L. B., R. D. M. Garcia, and C. E. Siewert. 2000. Particular solutions for the discrete-ordinates method. J. Quant. Spec. Rad. Trans. 64 (3):219–26.
  • Cortis, A., Y. Chen, H. Scher, and B. Berkowitz. 2004. Quantitative characterization of pore-scale disorder effects on transport in “homogeneous” granular media. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70 (4 Pt 1):041108. doi:https://doi.org/10.1103/PhysRevE.70.041108
  • Ganapol, B. D. 2008. Analytical benchmarks for nuclear engineering applications case studies in neutron transport theory. Paris: Nuclear Energy Agency, OECD.
  • Levenberg, K. 1944. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2 (2):164–8.
  • Loyalka, S. K., C. E. Siewert, and J. R. Thomas. Jr., 1981. An approximate solution concerning strong evaporation into a half space. Z. Angew. Math. Phys. 32 (6):745–7.
  • Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (2):431–41.
  • More, J. J., B. S. Garbow, and K. E. Hillstrom. 1980. User guide for MINPACK-1. Argonne National Laboratory Report ANL-80-74.
  • Ooura, T., and M. Mori. 1991. The double exponential formula for oscillatory functions over the half infinite interval. J. Comp. Appl. Math 38 (1-3):353–60.
  • Ooura, T., and M. Mori. 1999. A robust double exponential formula for Fourier-type integrals. J. Comp. Appl. Math. 112 (1–2):229–41.
  • Scherer, C. S., and L. B. Barichello. 2009. Evaporation effects in rarefied gas flows. Proc. COBEM 2009 COB09:0684.
  • Siewert, C. E. 2000. A concise and accurate solution to Chandrasekhar’s basic problem in radiative transfer. J. Quant. Spec. Rad. Trans. 64 (2):109–30.
  • Siewert, C. E., and J. R. Thomas Jr. 1981. Strong evaporation into a half space. Z. Angew. Math. Phys. 32 (4):421–33.
  • Siewert, C. E., and J. R. Thomas Jr. 1982. Strong evaporation into a half space. II. The three dimensional BGK model. Z. Angew. Math. Phys. 33 (2):202–18.
  • Siewert, C. E., and S. J. Wright. 1999. Efficient eigenvalue calculations in radiative transfer. J. Quant. Spec. Rad. Trans. 62 (6):685–8.
  • Sugihara, M. 1997. Optimality of the double exponential formula – functional analysis approach. Num. Math. 75 (3):379–95.
  • Trefethen, L. N., and J. A. C. Weideman. 2014. The exponentially convergent trapezoidal rule. SIAM Rev. 56 (3):385–458.
  • Williams, M. M. R. 1992. A new model for describing the transport of radionuclides through fractured rock. Ann. Nucl. Energy 19 (10–12):791–824.
  • Williams, M. M. R. 1992. Stochastic problems in the transport of radioactive nuclides in fractured rock. Nucl. Sci. Eng. 112 (3):215–30.
  • Williams, M. M. R. 1993. A new model for describing the transport of radionuclides through fractured rock Part II: Numerical results. Ann. Nucl. Energy 20 (3):185–202.
  • Williams, M. M. R. 1993. Radionuclide transport in fractured rock a new model: Application and discussion. Ann. Nucl. Energy 20 (4):279–97.