107
Views
1
CrossRef citations to date
0
Altmetric
Review

A Response Matrix Method for Slab-Geometry Discrete Ordinates Adjoint Calculations in Energy-Dependent Neutral Particle Transport

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahnesjo, A., and M. M. Aspradakis. 1999. Dose calculations for external photon beams in radiotherapy. Phys. Med. Biol. 44 (11):R99–155.
  • Barichello, L. B., and C. E. Siewert. 1999. A discrete ordinates solution for a non-grey model with complete frequency redistribution. J. Quant. Spectrosc. Radiat. Transf. 62 (6):665–75. doi:10.1016/S0022-4073(98)00096-X
  • Barichello, L. B., R. D. M. Garcia, and C. E. Siewert. 1998. A spherical harmonicssolution for radiative-transfer problems with reecting boundaries andinternal sources. J. Quant. Spectrosc. Radiat. Transf. 60 (2):247–60. doi:10.1016/S0022-4073(97)00176-3
  • Barros, R. C., and E. W. Larsen. 1990. A numerical method for one–group slab–geometry discrete ordinates problems with no spatial truncation error. Nucl. Sci. Eng. 104 (3):199–208. doi:10.13182/NSE90-A23719
  • Batistela, C. H. F., M. T. d Vilhena, and V. Borges. 1997. Criticality by the LTSn method. J. Nucl. Sci. Technol. 34 (6):603–6. doi:10.1080/18811248.1997.9733714
  • Bell, G. I., and S. Glasstone. 1970. Nuclear reactor theory. New York: Van Nostrand Reinhold.
  • Bellout, M. C., D. E. Ciaurri, L. J. Durlofsky, B. Foss, and J. Kleppe. 2012. Joint optimization of oil well placement and controls. Comput. Geosci. 16 (4):1061–79. doi:10.1007/s10596-012-9303-5
  • Benassi, M., R. M. Cotta, and C. E. Siewert. 1983. The PN method for radiativetransfer problems with reective boundary conditions. J. Quant. Spectrosc. Radiat. Transf. 30 (6):547–53. doi:10.1016/0022-4073(83)90010-9
  • Case, K. M., and P. F. Zweifel. 1967. Linear transport theory. Boston, MA: Addison-Wesley Publishing.
  • Curbelo, J. P., O. P. da Silva, and R. C. Barros. 2018. An adjoint technique applied to slab–geometry source–detector problems using the generalized spectral Green’s function nodal method. J. Comput. Theor. Transp. 47 (1-3):278–99. doi:10.1080/23324309.2018.1539403
  • Curbelo, J. P., O. P. da Silva, C. R. García, and R. C. Barros. 2017. Shifting strategy in the spectral analysis for the spectral Green’s function nodal method for slab–geometry adjoint transport problems in the discrete ordinates formulation. In Integral methods in science and engineering, Vol. 2: Practical applications, ed. C. Constanda, M. Dalla Riva, P. D. Lamberti, and P. Musolino, Ch. 20. Birkhauser Basel.
  • Da Silva, O. P., M. R. Guida, H. Alves Filho, and R. C. Barros. 2020. A response matrix spectral nodal method for energy multigroup X,Y-geometry discrete ordinates problems in non-multiplying media. Prog. Nucl. Energy 125:103288. doi:10.1016/j.pnucene.2020.103288
  • Domínguez, D. S., and R. C. Barros. 2007. The Spectral Green’s Function linear–nodal method for one–speed X, Y–geometry discrete ordinates deep penetration problems. Ann. Nucl. Energy 34 (12):958–66. doi:10.1016/j.anucene.2007.04.015
  • Gandini, A. 1967. A generalized perturbation method for bilinear functionals of the real and adjoint neutron fluxes. Nucl. Energy 21 (10):755–65. doi:10.1016/0022-3107(67)90086-X
  • Gandini, A. 1987. Generalised perturbation theory (GPT). A heuristic approach, Vol. 19, Ch. 4 New York: Plenum Press.
  • Garcia, R. D. M., and C. E. Siewert. 1983. Multislab multigroup transport theory with L′ th order anisotropic scattering. Comput. Phys. 50:181–92.
  • Haghighat, A., and J. C. Wagner. 2003. Monte Carlo variance reduction with deterministic importance functions. Prog. Nucl. Energy 42 (1):25–53. doi:10.1016/S0149-1970(02)00002-1
  • Hayashi, T., K. Tobita, Y. Nakamori, and S. Orimo. 2009. Advanced neutron shielding material using zirconium borohydride and zirconium hydride. J. Nucl. Mater. 386-388 (30):119–21. doi:10.1016/j.jnucmat.2008.12.073
  • Kent, A. G., L. H. John, A. W. Todd, F. Gregory, and M. Firas. 2006. Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations. Phys. Med. Biol. 51:2253–65.
  • Kim, A. D. 2004. Transport theory for light propagation in biological tissue. J. Opt. Soc. Am. A. 21 (5):820–7. doi:10.1364/JOSAA.21.000820
  • Korobeynikov, A., and V. Ginkin. 2008. Computing analysis and optimization of neutron beam for tumor therapy. Transp. Theory Stat. Phys. 37 (5-7):601–12. doi:10.1080/00411450802523464
  • Leppanen, J. 2019. Response matrix method–based importance solver and variance reduction scheme in the Serpent 2 Monte Carlo code. Nucl. Technol. 205 (11):1–17.
  • Lewins, J. 1965. Importance: The adjoint function. Oxford, UK: Pergamon.
  • Lewis, E. E., and W. F. Miller. 1993. Computational methods of neutron transport. La Grange Park, IL: American Nuclear Society.
  • Mansur, R. S., C. A. Moura, and R. C. Barros. 2015. A response matrix method for one-speed slab-geometry discrete ordinates adjoint calculations in source-detector problems. In Book of Abstracts of 24th, ICTT Teromina-Italy, 55–6.
  • Menezes, W. A., H. Alves Filho, and R. Barros. 2014. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab–geometry non–multiplying media. Ann. Nucl. Energy 64:270–5. doi:10.1016/j.anucene.2013.09.023
  • Menezes, W. A., H. Alves Filho, and R. C. Barros. 2018. An analytical nodal method for energy multi-group discrete ordinates transport calculations in two-dimensional rectangular geometry. IJNEST 12 (1):66. doi:10.1504/IJNEST.2018.10013863
  • Moraes, L. R. C., H. Alves Filho, and R. C. Barros. 2017a. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation. In: International Nuclear Atlantic Conference (INAC), Belo Horizonde, XX ENFIR.
  • Moraes, L. R. C., H. Alves Filho, and R. C. Barros. 2017b. Estimation of monoenergetic neutron source distribution for a prescribed power density generation in subcritical X,Y-geometry fission-chain reacting systems. In The Fourth International Conference on Physics and Technology of Reactors and Applications.–PHYTRA4 2018, Moroccan Association for Nuclear Engineering and Reactor Technology, Marrakech, Morocco.
  • Moraes, L. R. C., H. Alves Filho, and R. C. Barros. 2020. Estimation of neutron sources driving prescribed power generations in subcritical systems using one-speed two-dimensional discrete ordinates formulations. Ann. Nucl. Energy 136:107053. doi:10.1016/j.anucene.2019.107053[Mismatch] .
  • Nifenecker, N., O. Meplan, and D. David. 2003. Accelerator driven subcritical reactors. IOP Publishing.
  • Prinja, A. K., and E. W. Larsen. 2010a. Ch. General principles of neutron transport. In The adjoint neutron transport equation, 485–99. Springer.
  • Prinja, A. K., and E. W. Larsen. 2010b. General principles of neutron transport. In Handbook of nuclear engineering, ed. D. G. Cacuci, Ch. 5. New York: Springer Science + Business Media.
  • Royston, K., A. Haghighat, W. Walters, C. Yi, and G. E. Sjoden. 2014. Determination of current at a detector window using a hybrid adjoint function methodology. Prog. Nuclear Sci. Technol. 4:528–32. doi:10.15669/pnst.4.528
  • Silva, D. M., H. Alves–Filho, and R. C. Barros. 2017. A hybrid spectral nodal method for multigroup X, Y–geometry discrete ordinates eigenvalue problems. Prog. Nucl. Energy 95:33–9. doi:10.1016/j.pnucene.2016.11.003
  • Silva, D. M., E. J. Lydia, M. R. Guida, J. H. Zani, H. Alves Filho, and R. C. Barros. 2013. Analytical methods for computacional modeling of fixed-source slab-geometry discrete ordinates transport problems: Response matrix and hybrid SN. Prog. Nucl. Energy 69:77–84. doi:10.1016/j.pnucene.2013.02.007
  • Silva, O. P. 2018. Um método de matriz resposta para cálculos de transporte multigrupos de energia na formulação das ordenadas discretas em meios não-multiplitcativos. PhD thes., UERJ, Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ.
  • Vargas, R., and M. T. Vilhena. 1999. A closed-form solution for one-dimensional radiative condutive problem by the decomposition and LTSN methods. J. Quant. Spectrosc. Radiat. Transf. 61 (3):303–8. doi:10.1016/S0022-4073(97)00225-2
  • Vasques, R., and E. W. Larsen. 2009. Anisotropic diffusion in model 2-D pebble-bed reactor cores. In: Proceedings of the International Conference on Advances in Mathematics, Saratoga Springs, NY.
  • Vasques, R., and E. W. Larsen. 2014. Non-classical particle transport with angular-dependent pathlength distributions. II: Application to pebble bed reactor cores. Ann. Nucl. Energy 70:301–11. doi:10.1016/j.anucene.2013.12.020
  • Vilhena, M. T., and L. Barichello. 1995. An analytical solution for the multigroup slab geometry discrete ordinates problems. Transp. Theory Stat. Phys. 24 (6):1029–37.
  • Zhang, D., and F. Rahnema. 2016. The adjoint coarse mesh transport (COMET) method and reciprocity relation of response coefficients. J. Comput. Theor. Transp. 45 (7):578–93. doi:10.1080/23324309.2016.1227850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.