163
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Hybrid Lattice Boltzmann Simulation of Three-Dimensional Natural Convection

References

  • Arun, S., A. Satheesh, and A. J. Chamkha. 2020. Numerical analysis of double-diffusive natural convection in shallow and deep open-ended cavities using lattice Boltzmann method. Arab. J. Sci. Eng. 45 (2):861–876. doi:10.1007/s13369-019-04156-3
  • Bettaibi, S., F. Kuznik, and E. Sediki. 2014. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity. Phys Lett. A 378 (32–33):2429–2435. doi:10.1016/j.physleta.2014.06.032
  • Bettaibi, S., F. Kuznik, and E. Sediki. 2016. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Phys. A 444:311–326. doi:10.1016/j.physa.2015.10.029
  • Chen, W., S. Chen, X. Yuan, H. Zhang, and K. Yu. 2015. Three-dimensional simulation of interfacial convection in CO2–ethanol system by hybrid lattice Boltzmann method with experimental validation. Chin. J. Chem. Eng. 23 (2):356–365. doi:10.1016/j.cjche.2014.11.026
  • Dadvand, A., S. H. Saraei, S. Ghoreishi, and A. J. Chamkha. 2021. Lattice Boltzmann simulation of natural convection in a square enclosure with discrete heating. Math. Comput. Sim. 179:256–278. 10.1016/j.matcom.2020.07.025
  • Dong, B., Y. Zhang, X. Zhou, C. Chen, and W. Li. 2019. Lattice Boltzmann simulation of two-phase flow involving non-Newtonian fluid in rough channels. Therm. Sci. Eng. Prog. 10:309–316. doi:10.1016/j.tsep.2019.02.008
  • Fard, A. H., P. Hooshmand, M. Mohammaei, and D. Ross. 2019. Numerical study on free convection in a U-shaped CuO/water nanofluid-filled cavity with different aspect ratios using double-MRT lattice Boltzmann. Therm. Sci. Eng. Prog. 14:100373. doi:10.1016/j.tsep.2019.100373
  • Feng, Y.-L., S.-L. Guo, W.-Q. Tao, and P. Sagaut. 2018. Regularized thermal lattice Boltzmann method for natural convection with large temperature differences. Int. J. Heat Mass Transfer 125:1379–1391. doi:10.1016/j.ijheatmasstransfer.2018.05.051
  • Fusegi, T., J. M. Hyun, and K. Kuwahara. 1991. Three-dimensional simulations of natural convection in a sidewall-heated cube. Int. J. Numer. Meth. Fluids 13 (7):857–867. doi:10.1002/fld.1650130704
  • Gaedtke, M., S. Abishek, R. Mead-Hunter, A. J. C. King, B. J. Mullins, H. Nirschl, and M. J. Krause. 2020. Total enthalpy-based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials. Int. J. Heat Mass Transfer 155:119870. doi:10.1016/j.ijheatmasstransfer.2020.119870
  • Gibanov, N. S., and M. A. Sheremet. 2018. Natural convection in a cubical cavity with different heat source configurations. Therm. Sci. Eng. Prog. 7:138–145. doi:10.1016/j.tsep.2018.06.004
  • Hammouda, S., B. Amami, and H. Dhahri. 2018. Viscous dissipation effects on heat transfer for nanofluid flow over a backward-facing step through porous medium using lattice Boltzmann method. J. Nanofluids 7 (4):668–82. doi:10.1166/jon.2018.1491
  • Han, Q., H. Wang, C. Yu, and C. Zhang. 2020. Lattice Boltzmann simulation of melting heat transfer in a composite phase change material. Appl Therm. Eng. 176:115423. doi:10.1016/j.applthermaleng.2020.115423
  • Hinojosa, J. F., and J. Cervantes-de Gortari. 2010. Numerical simulation of steady-state and transient natural convection in an isothermal open cubic cavity. Heat Mass Transfer 46 (6):595–606. doi:10.1007/s00231-010-0608-4
  • Izadi, M., R. Mohebbi, A. Chamkha, and I. Pop. 2018. Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped cavity using Lattice Boltzmann method. HFF 28 (8):1930–1955. doi:10.1108/HFF-03-2018-0110
  • Javaherdeh, K., and T. Azarbarzin. 2017. Lattice Boltzmann simulation of nanofluid mixed convection in a lid-driven trapezoidal enclosure with square heat source. J. Nanofluids. 6 (6):1188–1197. doi:10.1166/jon.2017.1398
  • Komen, E. M. J., L. H. Camilo, A. Shams, B. J. Geurts, and B. Koren. 2017. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows. J. Comput. Phys. 345:565–595. doi:10.1016/j.jcp.2017.05.030
  • Lallemand, P., and L.-S. Luo. 2003. Hybrid finite-difference thermal lattice Boltzmann equation. Int. J. Mod. Phys. B. 17 (01n02):41–47. doi:10.1142/S0217979203017060
  • Lecrivain, G., R. Rayan, A. Hurtado, and U. Hampel. 2016. Using quasi-DNS to investigate the deposition of elongated aerosol particles in a wavy channel flow. Comput. Fluids 124:78–85. doi:10.1016/j.compfluid.2015.10.012
  • Li, Q., D. H. Du, L. L. Fei, and K. H. Luo. 2019. Three-dimensional non-orthogonal MRT pseudopotential lattice Boltzmann model for multiphase flows. Comput. Fluids 186:128–140. doi:10.1016/j.compfluid.2019.04.014
  • Li, Y., X.-D. Niu, Y. Wang, A. Khan, and Q.-Z. Li. 2019. An interfacial lattice Boltzmann flux solver for simulation of multiphase flows at large density ratio. Int. J. Multiphas. Flow 116:100–112. doi:10.1016/j.ijmultiphaseflow.2019.04.006
  • Liu, Y., and H. Wang. 2020. Simulations of the rectangular wave-guide pattern in the complex Maxwell vorticity equations by lattice Boltzmann method. Math. Comput. Sim. 173:1–15. doi:10.1016/j.matcom.2020.01.016
  • Moufekkir, F., M. A. Moussaoui, A. Mezrhab, M. Bouzidi, and N. Laraqi. 2013. Study of double-diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method. Int. J. Therm. Sci. 63:65–86. doi:10.1016/j.ijthermalsci.2012.07.015
  • Obrecht, C., F. Kuznik, B. Tourancheau, and J.-J. Roux. 2012. The TheLMA project: A thermal lattice Boltzmann solver for the GPU. Comput. Fluids 54:118–126. doi:10.1016/j.compfluid.2011.10.011
  • Rahimi, A., A. Kasaeipoor, E. H. Malekshah, M. Palizian, and L. Kolsi. 2018. Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm. Sci. Eng. Prog. 5:372–387. doi:10.1016/j.tsep.2018.01.005
  • Rahimi, A., A. Kasaeipoor, E. H. Malekshah, and L. Kolsi. 2018. Lattice Boltzmann simulation of free convection in nanofluid filled cavity with partially active walls – entropy generation and heatline visualization. HFF 28 (10):2254–2283. doi:10.1108/HFF-06-2017-0229
  • Rahimi, A., M. Sepehr, M. J. Lariche, A. Kasaeipoor, E. H. Malekshah, and L. Kolsi. 2018. Entropy generation analysis and heatline visualization of free convection in nanofluid (KKL model-based)-filled cavity including internal active fins using lattice Boltzmann method. Comput. Math. Appl. 75 (5):1814–1830. doi:10.1016/j.camwa.2017.12.008
  • Salimi, M. R., E. Alizadeh-Seresht, and M. Taeibi-Rahni. 2019. New hybrid finite volume-thermal lattice Boltzmann method, based on multi relaxation time collision operator. Int. J. Heat Mass Transfer 138:1281–1294. doi:10.1016/j.ijheatmasstransfer.2019.04.130
  • Samarskii, A. A. 1977. The theory of difference schemes [in Russian]. Moscow: Nauka.
  • Sharma, K. V., R. Straka, and F. W. Tavares. 2020. Current status of Lattice Boltzmann methods applied to aerodynamic, aeroacoustic, and thermal flows. Prog. Aerosp. Sci. 115:100616. doi:10.1016/j.paerosci.2020.100616
  • Succi, S. 2001. The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford University Press.
  • Wang, P., Y. Zhang, and Z. Guo. 2017. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers. Int. J. Heat Mass Transfer 113:217–228. doi:10.1016/j.ijheatmasstransfer.2017.05.057
  • Xu, A., L. Shi, and H.-D. Xi. 2019. Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. Int. J. Heat Mass Transfer 140:359–370. doi:10.1016/j.ijheatmasstransfer.2019.06.002
  • Ya, A., I. Zaidi, and D. Laurence. 2015. Quasi-DNS of natural convection flow in a cylindrical annuli with an optimal polyhedral mesh refinement. Comput. Fluids 118:44–52.
  • Yu, X., K. Regenauer-Lieb, and F.-B. Tian. 2019. A hybrid immersed boundary-lattice Boltzmann/finite difference method for coupled dynamics of fluid flow, advection, diffusion and adsorption in fractured and porous media. Comput. Geosci. 128:70–8. doi:10.1016/j.cageo.2019.04.005
  • Zecevic, V., M. P. Kirkpatrick, and S. W. Armfield. 2020. Rectangular lattice Boltzmann method using multiple relaxation time collision operator in two and three dimensions. Comput. Fluids 202:104492. doi:10.1016/j.compfluid.2020.104492
  • Zhao, P., Z. Ge, J. Zhu, J. Liu, and M. Ye. 2018. Quasi-direct numerical simulation of forced convection over a backwardfacing step: Effect of Prandtl number. Nucl. Eng. Des. 335:374–388. doi:10.1016/j.nucengdes.2018.05.012
  • Zhu, W., M. Wang, and H. Chen. 2017. 2D and 3D lattice Boltzmann simulation for natural convection melting. Int. J. Therm. Sci. 117:239–250. doi:10.1016/j.ijthermalsci.2017.03.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.