93
Views
0
CrossRef citations to date
0
Altmetric
Article

High-Order Mixed Finite Element Variable Eddington Factor Methods

ORCID Icon &

References

  • Ainsworth, M., G. Andriamaro, and O. Davydov. 2011. Bernstein–bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput. 33 (6):3087–109. doi:10.1137/11082539X.
  • Anderson, R., J. Andrej, A. Barker, J. Bramwell, J. S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, et al. 2021. MFEM: A modular finite element methods library. Comput. Math. Appl. 81:42–74. doi:10.1016/j.camwa.2020.06.009.
  • Anistratov, D. Y., and V. Y. Gol’din. 1993. Nonlinear methods for solving particle transport problems. Transp. Theory Stat. Phys. 22 (2–3):125–63. doi:10.1080/00411459308203810.
  • Baudron, A. M., and J. J. Lautard. 2007. Minos: A simplified pn solver for core calculation. Nucl. Sci. Eng. 155 (2):250–63. doi:10.13182/NSE07-A2660.
  • Benzi, M., G. H. Golub, and J. Liesen. 2005. Numerical solution of saddle point problems. Acta Numer. 14:1–137. doi:10.1017/S0962492904000212.
  • Boffi, D., F. Brezzi, and M. Fortin. 2013. Mixed finite element methods and applications. Berlin, Heidelberg, Germany: Springer.
  • Brezzi, F. 2003. Stability of saddle-points in finite dimensions, 17–61. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg.
  • Ciarlet, P. 1988. Three-dimensional elasticity, ser. Mathematical elasticity. Amsterdam, Netherlands: Elsevier Science.
  • Dobrev, V., T. Ellis, T. Z. Kolev, and R. Rieben. 2013. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids 83:58–69. doi:10.1016/j.compfluid.2012.06.004.
  • Dobrev, V., T. Kolev, and R. Rieben. 2012. High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34 (5):B606–B641. doi:10.1137/120864672.
  • Dobrev, V., T. Kolev, C. S. Lee, V. Tomov, and P. S. Vassilevski. 2019. Algebraic hybridization and static condensation with application to scalable $h$(div) preconditioning. SIAM J. Sci. Comput 41 (3):B425–B447. doi:10.1137/17M1132562.
  • Elman, H., D. Silvester, and A. Wathen. 2014. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, ser. Numerical Mathematics and Scie. Oxford: Oxford University Press. https://books.google.com/books?id=9zSTAwAAQBAJ
  • Falgout, R. D., and U. M. Yang. 2002. Hypre: A library of high performance preconditioners. In Proceedings of the International Conference on Computational Science-Part III, Ser. ICCS ’02, 632–41. Berlin, Heidelberg, Germany: Springer-Verlag.
  • Haut, T. S., P. G. Maginot, V. Z. Tomov, B. S. Southworth, T. A. Brunner, and T. S. Bailey. 2019. An efficient sweep-based solver for the SN equations on high-order meshes. Nucl. Sci. Eng. 193 (7):746–59. doi:10.1080/00295639.2018.1562778.
  • Hennart, J. P., E. H. Mund, and E. D. Valle. 1997. A composite nodal finite element for hexagons. Nucl. Sci. Eng. 127 (2):139–53. doi:10.13182/NSE97-A28593.
  • Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31 (3):363–96. doi:10.1145/1089014.1089020.
  • Lautard, J., and F. Moreau. 1993. A fast 3-d parallel diffusion solver based on a mixed-dual finite element approximation. In Proceedings of the American Nuclear Society Topical Meeting: Mathematical Methods and Supercomputing in Nuclear Applications. Karlsruhe, Germany.
  • Li, X. S., and J. W. Demmel. 2003. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29 (2):110–40. doi:10.1145/779359.779361.
  • Lou, J., and J. E. Morel. 2021. A variable Eddington factor method with different spatial discretizations for the radiative transfer equation and the hydrodynamics/radiation-moment equations. Comput. Phys. 439:110393. https://www.sciencedirect.com/science/article/pii/S0021999121002886. doi:10.1016/j.jcp.2021.110393
  • Lou, J., J. E. Morel, and N. Gentile. 2019. A variable Eddington factor method for the 1-D grey radiative transfer equations with discontinuous Galerkin and mixed finite-element spatial differencing. Comput. Phys. 393:258–77. doi:10.1016/j.jcp.2019.05.012.
  • Maginot, P. G., and T. A. Brunner. 2018. Lumping techniques for mixed finite element diffusion discretizations. J. Comput. Theor. Trans. 47 (4–6):301–25. doi:10.1080/23324309.2018.1461653.
  • MFEM. Modular finite element methods [Software]. 2010. https://mfem.org.
  • Miften, M., and E. Larsen. 1993. The quasi-diffusion method for solving transport problems in planar and spherical geometries. J. Trans. Theory Stat. Phys. 22 (2–3):165–86. doi:10.1080/00411459308203811.
  • Mihalas, D. 1978. Stellar atmospheres. New York, NY; W. H. Freeman and Co.
  • Olivier, S. S., and J. E. Morel. 2017. Variable Eddington factor method for the SN equations with lumped discontinuous Galerkin spatial discretization coupled to a drift-diffusion acceleration equation with mixed finite-element discretization. J. Comput. Theor. Trans. 46 (6–7):480–96. doi:10.1080/23324309.2017.1418378.
  • Olivier, S., P. Maginot, and T. Haut. 2019. High order mixed finite element discretization for the variable Eddington factor equations. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2019).
  • Olivier, S., W. Pazner, T. S. Haut, and B. C. Yee. 2023. A family of independent variable Eddington factor methods with efficient preconditioned iterative solvers. Comput. Phys. 473:111747. https://www.sciencedirect.com/science/article/pii/S0021999122008105. doi:10.1016/j.jcp.2022.111747
  • Pazner, W., T. Kolev, and C. Dohrmann. 2022. Low-order preconditioning for the high-order finite element de rham complex. doi:10.1137/22M1486534.
  • Quarteroni, A., and A. Valli. 1994. Numerical approximation of partial differential equations. Berlin, Heidelberg, Germany: Springer.
  • Raviart, P. A., and J. M. Thomas. 1977. A mixed finite element method for 2-nd order elliptic problems. In Mathematical aspects of finite element methods, eds. I. Galligani and E. Magenes, 292–315. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg.
  • Rognes, M. E., R. C. Kirby, and A. Logg. 2010. “Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31 (6):4130–51. doi:10.1137/08073901X.
  • Stenberg, R. 1991. Postprocessing schemes for some mixed finite elements. Esaim: M2AN 25 (1):151–67. http://eudml.org/doc/193618.
  • Warsa, J., and D. Anistratov. 2018. Two-level transport methods with independent discretization. Journal of Computational and Theoretical Transport 47 (4–6):424–50. doi:10.1080/23324309.2018.1497991.
  • Woods, D. 2018. Discrete ordinates radiation transport using high-order finite element spatial discretizations on meshes with curved surfaces,” Ph.D. diss., Oregon State University.
  • Ya. Gol’din, V. 1964. A quasi-diffusion method of solving the kinetic equation. USSR Comp. Math. Math. Phys. 4:136–49. doi:10.1016/0041-5553(64)90085-0.
  • Yee, B. C., S. S. Olivier, T. S. Haut, M. Holec, V. Z. Tomov, and P. G. Maginot. 2020. A quadratic programming flux correction method for high-order DG discretizations of SN transport. Comput. Phys. 419:109696. doi:10.1016/j.jcp.2020.109696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.