35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison between Van Genuchten and Brooks-Corey Parameterizations in the Solution of Multiphase Problems in Rigid One-Dimensional Porous Media

, &

References

  • Abbaspour, H., M. Shorafa, R. Daneshfaraz, M. H. Mohammadi, and M. Rashtbari. 2012. Study and comparison the efficiency of mualem-van genuchten and brooks-corey models in predicting unsaturated hydraulic conductivity in compacted soils. J. Civil Eng. Urban. 2 (2):56–62.
  • Akhmetov, R., L. Kuleshova, and V. Mukhametshin. 2019. Application of the Brooks-Corey model in the conditions of lower cretaceous deposits in terrigenous reservoirs of Western Siberia. 560:07. IOP Conference Series: Materials Science and Engineering.
  • Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. 1994. Templates for the solution of linear systems: Building blocks for iterative methods. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.
  • Bastian, P. 1999. Numerical computation of multiphase flows in porous media. Master’s thesis, University of Kiel, Kiel.
  • Benson, C., I. Chiang, T. Chalermyanont, and A. Sawangsuriya. 2014. Estimating van genuchten parameters α and n for clean sands from particle size distribution data. 02. 410–427. doi:10.1061/9780784413265.033
  • Brewer, A., I. Dror, and B. Berkowitz. 2022. Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles. Chemosphere 287 (Pt 2):132217. doi:10.1016/j.chemosphere.2021.132217.
  • Brooks, R. H., and A. T. Corey. 1964. Hydraulic properties of porous media. Hydrol. Paper (3):21–5.
  • Burden, R. L., and J. D. Faires. 2016. Numerical analysis. 10th ed. Boston: Cengage Learning.
  • Celia, M. A., and P. Binning. 1992. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour. Res. 28 (10):2819–28. doi:10.1029/92WR01488.
  • Chamkha, A. J. 1996. Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. Int. Commun. Heat Mass Transfer. 23 (6):875–87. doi:10.1016/0735-1933(96)00070-X.
  • Chamkha, A. J. 1997. Non-darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer Heat Transfer Part A Appl. 32 (6):653–75. doi:10.1080/10407789708913911.
  • Chamkha, A. J. 2000a. Flow of two-immiscible fluids in porous and nonporous channels. J. Fluids Eng. Transact. Asme J. Fluid Eng. 122 (1):117–24. doi:10.1115/1.483233.
  • Chamkha, A. J. 2000b. Unsteady laminar hydromagnetic fluid–particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21 (6):740–6. doi:10.1016/S0142-727X(00)00031-X.
  • Chamkha, A. J. 2002. Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer Heat Transfer Part A Appl. 41 (1):65–87. doi:10.1080/104077802317221447.
  • Chamkha, A. J., and H. Al-Naser. 2001. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int. J. Therm. Sci. 40 (3):227–44. doi:10.1016/S1290-0729(00)01213-8.
  • Coatleven, J., and C. Meiller. 2021. On an efficient time scheme based on a new mathematical representation of thermodynamic equilibrium for multiphase compositional Darcy flows in porous media. Comput. Geosci. 25 (3):1063–82. doi:10.1007/s10596-021-10039-0.
  • Corey, A. T. 1994. Mechanics of immiscible fluids in porous media. Colorado: Water Resources Publications.
  • Costa, G. G. O. 2015. Basic statistics course (in Portuguese). 2nd ed. São Paulo: Atlas.
  • De Oliveira, M. L., M. A. V. Pinto, C. Rodrigo, F. J. Gaspar, and S. R. Franco. 2020. L-scheme and modified Picard with multigrid method for a 1D two-phase problem in rigid porous media with analytical solution. In Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, Foz Do Iguaçu/PR, Brazil.
  • De Oliveira, M. L., M. A. V. Pinto, S. d F. Tomazzoni, and G. V. Rutz. 2018. On the robustness of the xy-Zebra-gauss-seidel smoother on an anisotropic diffusion problem. Cmes. 117 (2):251–70. doi:10.31614/cmes.2018.04237.
  • Dejam, M., and H. Hassanzadeh. 2011. Formation of liquid bridges between porous matrix blocks. Alche. J. 57 (2):286–98. doi:10.1002/aic.12262.
  • Devore, J. L. 2012. Probability & statistics for engineering and the sciences. 8th ed. Boston: Cengage Learning.
  • Ferziger, J. H., and M. Peric. 2002. Computational methods for fluid dynamics. 3rd ed. New York: Springer.
  • Gaspar, F. J., F. J. Lisbona, C. W. Oosterlee, and R. Wienands. 2004. A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Num. Linear Algebra App. 11 (2–3):93–113. doi:10.1002/nla.372.
  • Goorabjiri, M. H., and A. Rasoulzadeh. 2016. Comparison of accuracy of van Genuchten and brooks & Corey models for simulating water flow in forest floor using HydroGeoSphere code. J. Water Soil 30 (3):984–96.
  • Han, X.-W., M.-A. Shao, and R. Horton. 2010. Estimating van Genuchten model parameters of undisturbed soils using an integral method. Pedosphere 20 (1):55–62. doi:10.1016/S1002-0160(09)60282-4.
  • Hughes, T. J. R. 2000. The finite element method: Linear static and dynamic finite element analysis. 1st ed. Mineola, NY: Dover Publications.
  • Illiano, D. 2016. Iterative schemes for solving coupled, non-linear flow and transport in porous media. Master’s thesis, University of Bergen.
  • Khanafer, K. M., and A. J. Chamkha. 1998. Hydromagnetic Natural Convection From an Inclined Porous Square Enclosure with Heat Generation. Num. Heat Transfer Part A Appl. 33 (8):891–910. doi:10.1080/10407789808913972.
  • Kreyszig, E. 2011. Advanced engineering mathematics. 10th ed. Hoboken, NJ: John Wiley & sons.
  • Kumar, J. P., J. C. Umavathi, A. J. Chamkha, and I. Pop. 2010. Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel. Appl. Math. Modell. 34 (5):1175–86. doi:10.1016/j.apm.2009.08.007.
  • Lenhard, R., J. Parker, and S. Mishra. 1989. On the correspondence between brooks-corey and van genuchten models. J. Irrig. Drain. Eng. 115 (4):744–51. doi:10.1061/(ASCE)0733-9437(1989)115:4(744).
  • LeVeque, R. J. 2007. Finite difference methods for ordinary and partial differential equations. 1st ed. Philadelphia: Society for Industrial and Applied Mathematics.
  • Liang, X., V. Liakos, O. Wendroth, and G. Vellidis. 2016. Scheduling irrigation using an approach based on the van Genuchten model. Agric. Water Manage. 176:170–9. doi:10.1016/j.agwat.2016.05.030.
  • Malacarne, M. F., M. A. V. Pinto, and S. R. Franco. 2022. Performance of the multigrid method with timestepping to solve 1D and 2D wave equations. Int. J. Comput. Methods Eng. Sci. Mech. 23 (1):45–56. doi:10.1080/15502287.2021.1910750.
  • Mascheroni, P., R. Santagiuliana, and B. Schrefler. 2019. Multiphase porous media models for mechanics in medicine: Applications to transport oncophysics and diabetic foot. In Encyclopedia of biomedical engineering, edited by Roger Narayan, 155–66. Oxford: Elsevier.
  • Oliveira, F. d., S. R. Franco, and M. A. V. Pinto. 2018. The effect of multigrid parameters in a 3d heat diffusion equation. Int. J. Appl. Mech. Eng. 23 (1):213–21. doi:10.1515/ijame-2018-0012.
  • Pan, T., S. Hou, Y. Liu, and Q. Tan. 2019. Comparison of three models fitting the soil water retention curves in a degraded alpine meadow region. Sci. Rep. 9 (1):18407. doi:10.1038/s41598-019-54449-8.
  • Santos, C., and C. Dias. 2021. Note on the coefficient of variation properties. Braz. Elect. J. Math. 2 (4):101–11. doi:10.14393/BEJOM-v2-n4-2021-58062.
  • Smaï, F. F. 2023. A thermodynamic formulation for multiphase compositional flows in porous media. https://api.semanticscholar.org/CorpusID:263737328.
  • Trottenberg, U., C. Oosterlee, and A. Schuller. 2001. Multigrid. San Diego: Academic Press.
  • Umavathi, J. C., A. J. Chamkha, A. Mateen, and A. Al-Mudhaf. 2005. Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transfer. 42 (2):81–90. doi:10.1007/s00231-004-0565-x.
  • van Genuchten, M. T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (5):892–8. doi:10.2136/sssaj1980.03615995004400050002x.
  • Versteeg, H. K. and Malalasekera. 2007. An introduction to computational fluid dynamics the finite volume method. 2nd ed. London: Pearson Education.
  • Wang, Q., R. Horton, and M. Shao. 2002. Horizontal infiltration method for determining brooks-corey model parameters. Soil Sci. Soc. Amer. J. 66 (6):1733–9. doi:10.2136/sssaj2002.1733.
  • Wang, Y., T. Lu, H. Zhang, Y. Li, Y. Song, J. Chen, X. Fu, Z. Qi, and Q. Zhang. 2020. Factors affecting the transport of petroleum colloids in saturated porous media. Colloids Surf, A. 585:124134. doi:10.1016/j.colsurfa.2019.124134.
  • Wesseling, P. 1992. An introduction to multigrid methods. Chichester: John Wiley & Sons.
  • Yang, X., and X. You. 2013. Estimating parameters of van genuchten model for soil water retention curve by intelligent algorithms. Appl. Math. Inf. Sci. 7 (5):1977–83. doi:http://doi.org/10.12785/amis/070537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.