943
Views
11
CrossRef citations to date
0
Altmetric
Priority Review

Orexins and the cardiovascular events of awakening

Pages 128-140 | Received 08 Jan 2017, Accepted 09 Feb 2017, Published online: 11 Apr 2017

References

  • Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, Vaughn BV. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Darien (IL): American Academy of Sleep Medicine; 2015.
  • Bastianini S, Berteotti C, Gabrielli A, Del Vecchio F, Amici R, Alexandre C, Scammell TE, Gazea M, Kimura M, Lo Martire V, et al. SCOPRISM: a new algorithm for automatic sleep scoring in mice. J Neurosci Methods. 2014;235:277-284. PMID:25092499; doi:10.1016/j.jneumeth.2014.07.018.
  • Silvani A. Physiological sleep-dependent changes in arterial blood pressure: central autonomic commands and baroreflex control. Clin Exp Pharmacol Physiol. 2008;35:987-994. PMID:18565197; doi:10.1111/j.1440-1681.2008.04985.x.
  • Silvani A, Dampney RA. Central control of cardiovascular function during sleep. Am J Physiol Heart Circ Physiol. 2013;305:H1683-H1692. PMID:24097430; doi:10.1152/ajpheart.00554.2013.
  • Grimaldi D, Silvani A, Benarroch EE, Cortelli P. Orexin/hypocretin system and autonomic control: new insights and clinical correlations. Neurology. 2014;82:271-278. PMID:24363130; doi:10.1212/WNL.0000000000000045.
  • Khatri IM, Freis ED. Hemodynamic changes during sleep. J Appl Physiol. 1967;22:867-873. PMID:6026506.
  • Schneider H, Schaub CD, Andreoni KA, Schwartz AR, Smith PL, Robotham JL, O'Donnell CP. Systemic and pulmonary hemodynamic responses to normal and obstructed breathing during sleep. J Appl Physiol. 1997;83:1671-1680. PMID:9375338.
  • Baust W, Bohnert B. The regulation of heart rate during sleep. Exp Brain Res. 1969;7:169-180. PMID:5799433; doi:10.1007/BF00235442.
  • Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic nerve activity during sleep in normal subjects. N Engl J Med. 1993;328:303-307. PMID:8419815; doi:10.1056/NEJM199302043280502.
  • Takeuchi S, Iwase S, Mano T, Okada H, Sugiyama Y, Watanabe T. Sleep-related changes in human muscle and skin sympathetic nerve activities. J Auton Nerv Syst. 1994;47:121-129. PMID:8188978; doi:10.1016/0165-1838(94)90073-6.
  • Kodama Y, Iwase S, Mano T, Cui J, Kitazawa H, Okada H, Takeuchi S, Sobue G. Attenuation of regional differentiation of sympathetic nerve activity during sleep in humans. J Auton Nerv Syst. 1998;74:126-133. PMID:9915628; doi:10.1016/S0165-1838(98)00150-7.
  • Miki K, Kato M, Kajii S. Relationship between renal sympathetic nerve activity and arterial pressure during REM sleep in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R467-R473. PMID:12388457; doi:10.1152/ajpregu.00045.2002.
  • Donadio V, Liguori R, Vandi S, Giannoccaro MP, Pizza F, Leta V, Plazzi G. Sympathetic and cardiovascular changes during sleep in narcolepsy with cataplexy patients. Sleep Med. 2014;15:315-321. PMID:24503475; doi:10.1016/j.sleep.2013.12.005.
  • Mancia G, Baccelli G, Adams DB, Zanchetti A. Vasomotor regulation during sleep in the cat. Am J Physiol. 1971;220:1086-1093. PMID:5551135.
  • Yoshimoto M, Sakagami T, Nagura S, Miki K. Relationship between renal sympathetic nerve activity and renal blood flow during natural behavior in rats. Am J Physiol Regul Integr Comp Physiol. 2004;286:R881-R887. PMID:14726424; doi:10.1152/ajpregu.00105.2002.
  • Kirby DA, Verrier RL. Differential effects of sleep stage on coronary hemodynamic function. Am J Physiol Heart Circ Physiol. 1989;256:H1378-H1383. PMID: 2719135.
  • Zoccoli G, Grant DA, Wild J, Walker AM. Nitric oxide inhibition abolishes sleep-wake differences in cerebral circulation. Am J Physiol Heart Circ Physiol. 2001;280:H2598-H2606. PMID:11356615.
  • Zoccoli G, Bach V, Nardo B, Cianci T, Lenzi P, Franzini C. Spinal cord blood flow changes during the sleep-wake cycle in rat. Neurosci Lett. 1993;163:173-176. PMID:8309626; doi:10.1016/0304-3940(93)90375-U.
  • Madsen PL. Blood flow and oxygen uptake in the human brain during various states of sleep and wakefulness. Acta Neurol Scand Suppl. 1993;148:3-27. PMID:8273451.
  • Silvani A, Asti V, Berteotti C, Ferrari V, Franzini C, Lenzi P, Wild J, Grant DA, Walker AM, Zoccoli G. Sleep-dependent changes in cerebral oxygen consumption in newborn lambs. J Sleep Res. 2006;15:206-211. PMID:16704576; doi:10.1111/j.1365-2869.2006.00521.x.
  • Uschakov A, Gong H, McGinty D, Szymusiak R. Sleep-active neurons in the preoptic area project to the hypothalamic paraventricular nucleus and perifornical lateral hypothalamus. Eur J Neurosci. 2006;23:3284-3296. PMID:16820018; doi:10.1111/j.1460-9568.2006.04860.x.
  • Benarroch EE. Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res. 2005;15:254-263. PMID:16032381; doi:10.1007/s10286-005-0290-7.
  • el Mansari M, Sakai K, Jouvet M. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res. 1989;76:519-529. PMID:2551709; doi:10.1007/BF00248908.
  • Padley JR, Kumar NN, Li Q, Nguyen TB, Pilowsky PM, Goodchild AK. Central command regulation of circulatory function mediated by descending pontine cholinergic inputs to sympathoexcitatory rostral ventrolateral medulla neurons. Circ Res. 2007;100:284-291. PMID:17204655; doi:10.1161/01.RES.0000257370.63694.73.
  • Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ. Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull. 1987;18:731-738. PMID:3304544; doi:10.1016/0361-9230(87)90208-5.
  • Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74:323-364. PMID:8171117.
  • Saito H, Sakai K, Jouvet M. Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res. 1977;134:59-72. PMID:912422; doi:10.1016/0006-8993(77)90925-8.
  • Eguchi K, Satoh T. Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat's solitary tract nucleus. Arch Ital Biol. 1980;118:331-345. PMID:7212912.
  • Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci. 2016;196:14-24. PMID:26924538; doi:10.1016/j.autneu.2016.02.010.
  • Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;18:4705-4721. PMID:9614245.
  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216-219. PMID:8539624; doi:10.1126/science.271.5246.216.
  • Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002;22:977-990. PMID:11826126.
  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18:9996-10015. PMID:9822755.
  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991-997. PMID:10973318; doi:10.1038/79690.
  • American Academy of Sleep Medicine. International classification of sleep disorders. Darien (IL): American Academy of Sleep Medicine; 2014.
  • Silvani A, Bastianini S, Berteotti C, Cenacchi G, Leone O, Lo Martire V, Papa V, Zoccoli G. Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. J Sleep Res. 2014;23:98-106. PMID:24033681; doi:10.1111/jsr.12081.
  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345-354. PMID:11394998; doi:10.1016/S0896-6273(01)00293-8.
  • Bastianini S, Silvani A, Berteotti C, Elghozi JL, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice. Sleep. 2011;34:213-218. PMID:21286242.
  • Silvani A, Calandra-Buonaura G, Dampney RA, Cortelli P. Brain-heart interactions: physiology and clinical implications. Philos Trans A: Math Phys Eng Sci. 2016;374:20150181. PMID:27044998; doi:10.1098/rsta.2015.0181.
  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437-451. PMID:10481909; doi:10.1016/S0092-8674(00)81973-X.
  • Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol. 2016;594:6443-6462. PMID:27302606; doi:10.1113/JP271946.
  • Lo Martire V, Silvani A, Bastianini S, Berteotti C, Zoccoli G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLoS One. 2012;7:e47032. PMID:23056568; doi:10.1371/journal.pone.0047032.
  • Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol: Regul Integr Comp Physiol. 2003;285:R581-R593. PMID:12750151; doi:10.1152/ajpregu.00671.2002.
  • Zhang W, Sakurai T, Fukuda Y, Kuwaki T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am J Physiol: Regul Integr Comp Physiol. 2006;290:R1654-R1663. PMID:16410401; doi:10.1152/ajpregu.00704.2005.
  • Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J Appl Physiol. 2010;109:1053-1063. PMID:20705949; doi:10.1152/japplphysiol.00516.2010.
  • van der Meijden WP, Fronczek R, Reijntjes RH, Corssmit EP, Biermasz NR, Lammers GJ, van Dijk JG, Thijs RD. Time- and state-dependent analysis of autonomic control in narcolepsy: higher heart rate with normal heart rate variability independent of sleep fragmentation. J Sleep Res. 2015;24:206-214. PMID:25382307; doi:10.1111/jsr.12253.
  • Grimaldi D, Calandra-Buonaura G, Provini F, Agati P, Pierangeli G, Franceschini C, Barletta G, Plazzi G, Montagna P, Cortelli P. Abnormal sleep-cardiovascular system interaction in narcolepsy with cataplexy: effects of hypocretin defciency in humans. Sleep. 2012;35:519-528. PMID:22467990; doi:10.5665/sleep.1738.
  • Dauvilliers Y, Jaussent I, Krams B, Scholz S, Lado S, Levy P, Pepin JL. Non-dipping blood pressure profile in narcolepsy with cataplexy. PLoS One. 2012;7:e38977. PMID:22768053; doi:10.1371/journal.pone.0038977.
  • Sieminski M, Partinen M. “Non-dipping” is equally frequent in narcoleptic patients and in patients with insomnia. Sleep Biol Rhythms. 2016;14:31-36. PMID:26855609; doi:10.1007/s41105-015-0004-z.
  • Silvani A, Grimaldi D, Barletta G, Bastianini S, Vandi S, Pierangeli G, Plazzi G, Cortelli P. Cardiovascular variability as a function of sleep-wake behaviour in narcolepsy with cataplexy. J Sleep Res. 2013;22:178-184. PMID:23217021; doi:10.1111/jsr.12007.
  • Donadio V, Liguori R, Vandi S, Pizza F, Dauvilliers Y, Leta V, Giannoccaro MP, Baruzzi A, Plazzi G. Lower wake resting sympathetic and cardiovascular activities in narcolepsy with cataplexy. Neurology. 2014;83:1080-1086. PMID:25098533; doi:10.1212/WNL.0000000000000793.
  • Crocker A, España RA, Papadopoulou M, Saper CB, Faraco J, Sakurai T, Honda M, Mignot E, Scammell TE. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65:1184-1188. PMID:16247044; doi:10.1212/01.WNL.0000168173.71940.ab.
  • Alföldi P, Rubicsek G, Cserni G, Obál FJ. Brain and core temperatures and peripheral vasomotion during sleep and wakefulness at various ambient temperatures in the rat. Pflugers Arch. 1990;417:336-341. PMID:2274418; doi:10.1007/BF00371001.
  • Tanaka M, Ootsuka Y, McKinley MJ, McAllen RM. Independent vasomotor control of rat tail and proximal hairy skin. J Physiol. 2007;582:421-433. PMID:17430987; doi:10.1113/jphysiol.2007.131292.
  • Kräuchi K, Gompper B, Hauenstein D, Flammer J, Pflüger M, Studerus E, Schötzau A, Orgül S. Diurnal blood pressure variations are associated with changes in distal-proximal skin temperature gradient. Chronobiol Int. 2012;29:1273-1283. PMID:23003124; doi:10.3109/07420528.2012.719961.
  • Kräuchi K, Cajochen C, Wirz-Justice A. Waking up properly: is there a role of thermoregulation in sleep inertia? J Sleep Res. 2004;13:121-127. PMID:15175091; doi:10.1111/j.1365-2869.2004.00398.x.
  • Swoap SJ, Overton JM, Garber G. Effect of ambient temperature on cardiovascular parameters in rats and mice: a comparative approach. Am J Physiol: Regul Integr Comp Physiol. 2004;287:R391-R396. PMID:15087284; doi:10.1152/ajpregu.00731.2003.
  • Fronczek R, Overeem S, Lammers GJ, van Dijk JG, Van Someren EJ. Altered skin-temperature regulation in narcolepsy relates to sleep propensity. Sleep. 2006;29:1444-1449. PMID:17162991.
  • van der Heide A, Donjacour CE, Pijl H, Reijntjes RH, Overeem S, Lammers GJ, Van Someren EJ, Fronczek R. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy. J Sleep Res. 2015;24:566-575. PMID:25913575; doi:10.1111/jsr.12303.
  • van der Heide A, Werth E, Donjacour CE, Reijntjes RH, Lammers GJ, Van Someren EJ, Baumann CR, Fronczek R. Core body and skin temperature in type 1 narcolepsy in daily life; effects of sodium oxybate and prediction of sleep attacks. Sleep. 2016;39:1941-1949. PMID:27568803; doi:10.5665/sleep.6220.
  • Grimaldi D, Agati P, Pierangeli G, Franceschini C, Guaraldi P, Barletta G, Vandi S, Cevoli S, Plazzi G, Montagna P, et al. Hypocretin deficiency in narcolepsy with cataplexy is associated with a normal body core temperature modulation. Chronobiol Int. 2010;27:1596-1608. PMID:20854137; doi:10.3109/07420528.2010.504907.
  • Mochizuki T, Klerman EB, Sakurai T, Scammell TE. Elevated body temperature during sleep in orexin knockout mice. Am J Physiol: Regul Integr Comp Physiol. 2006;291:R533-R540. PMID:16556901; doi:10.1152/ajpregu.00887.2005.
  • Zhang S, Zeitzer JM, Sakurai T, Nishino S, Mignot E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol. 2007;581:649-663. PMID:17379635; doi:10.1113/jphysiol.2007.129510.
  • Mohammed M, Yanagisawa M, Blessing W, Ootsuka Y. Attenuated cold defense responses in orexin neuron-ablated rats. Temperature. 2016;3:465-475; doi:10.1080/23328940.2016.1184366.
  • Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature. 2015;2:379-391. PMID: 27227052; doi:10.1080/23328940.2015.1066921.
  • Takahashi K, Kayama Y, Lin JS, Sakai K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010;169:1115-1126. PMID:20542093; doi:10.1016/j.neuroscience.2010.06.009.
  • Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;26:10292-10298. PMID:17021184; doi:10.1523/JNEUROSCI.2341-06.2006.
  • Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153:860-870. PMID:18424001; doi:10.1016/j.neuroscience.2008.02.058.
  • Takahashi K, Lin JS, Sakai K. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience. 2009;161:269-292. PMID:19285545; doi:10.1016/j.neuroscience.2009.02.075.
  • Bruinstroop E, Cano G, Vanderhorst VG, Cavalcante JC, Wirth J, Sena-Esteves M, Saper CB. Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol. 2012;520:1985-2001. PMID:22173709; doi:10.1002/cne.23024.
  • Van Bockstaele EJ, Pieribone VA, Aston-Jones G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. J Comp Neurol. 1989;290:561-584. PMID:2482306; doi:10.1002/cne.902900410.
  • Miyawaki T, Kawamura H, Hara K, Suzuki K, Usui W, Yasugi T. Differential regional hemodynamic changes produced by L-glutamate stimulation of the locus coeruleus. Brain Res. 1993;600:56-62. PMID:8093676; doi:10.1016/0006-8993(93)90401-8.
  • Almeida MC, Steiner AA, Coimbra NC, Branco LG. Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. J Physiol. 2004;558:283-294. PMID:15146040; doi:10.1113/jphysiol.2004.066654.
  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526-33. PMID:21037585; doi:10.1038/nn.2682.
  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M. Identification of sleep-promoting neurons in vitro. Nature. 2000;404:992-995. PMID:10801127; doi:10.1038/35010109.
  • McGinty D, Gong H, Suntsova N, Alam MN, Methippara M, Guzman-Marin R, Szymusiak R. Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. Arch Ital Biol. 2004;142:501-509. PMID:15493551.
  • McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol. 2015;214:8-32. PMID: 25753944; doi:10.1111/apha.12487.
  • Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann NY Acad Sci. 2008;1129:275-286. PMID:18591488; doi:10.1196/annals.1417.027.
  • Sakai K. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience. 2011;182:144-161. PMID:21396987; doi:10.1016/j.neuroscience.2011.03.010.
  • Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726-731. PMID:11718878; doi:10.1016/S0166-2236(00)02002-6.
  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68:1023-1042. PMID:21172606; doi:10.1016/j.neuron.2010.11.032.
  • Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415:145-159; doi:10.1002/(SICI)1096-9861(19991213)415:2%3c145::AID-CNE1%3e3.0.CO;2-2.
  • Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999;96:10911-10916. PMID:10485925; doi:10.1073/pnas.96.19.10911.
  • Bourgin P, Huitrón-Résendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, de Lecea L. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20:7760-7765. PMID:11027239.
  • Tsujino N, Tsunematsu T, Uchigashima M, Konno K, Yamanaka A, Kobayashi K, Watanabe M, Koyama Y, Sakurai T. Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One. 2013;8:e70012. PMID:23922890; doi:10.1371/journal.pone.0070012.
  • Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of wakefulness and energy expenditure by orexin-A in the ventrolateral preoptic area. Sleep. 2015;38:1361-1370. PMID:25845696; doi:10.5665/sleep.4970.
  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 2005;46:297-308. PMID:15848807; doi:10.1016/j.neuron.2005.03.010.
  • Niu JG, Yokota S, Tsumori T, Qin Y, Yasui Y. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat. Brain Res. 2010;1358:110-122. PMID:20735997; doi:10.1016/j.brainres.2010.08.056.
  • Govindaiah G, Cox CL. Modulation of thalamic neuron excitability by orexins. Neuropharmacology. 2006;51:414-425. PMID:16713607; doi:10.1016/j.neuropharm.2006.03.030.
  • Silvani A, Calandra-Buonaura G, Benarroch EE, Dampney RA, Cortelli P. Bidirectional interactions between the baroreceptor reflex and arousal: an update. Sleep Med. 2015;16:210-216. PMID:25616389; doi:10.1016/j.sleep.2014.10.011.
  • Baust W, Heinemann H. The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res. 1967;3:12-24. PMID:6030997; doi:10.1007/BF00234467.
  • Kesler B, Anand A, Launois SH, Weiss JW. Drug-induced arterial pressure elevation is associated with arousal from NREM sleep in normal volunteers. J Appl Physiol. 1999;87:897-901. PMID:10484555.
  • Horne RS, De Preu ND, Berger PJ, Walker AM. Arousal responses to hypertension in lambs: effect of sinoaortic denervation. Am J Physiol Heart Circ Physiol. 1991;260:H1283-H1289. PMID: 2012229.
  • Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol. 1990;293:540-580. PMID:1691748; doi:10.1002/cne.902930404.
  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519:933-956. PMID:21280045; doi:10.1002/cne.22559.
  • Kaur S, Pedersen NP, Yokota S, Hur EE, Fuller PM, Lazarus M, Chamberlin NL, Saper CB. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci. 2013;33:7627-7640. PMID:23637157; doi:10.1523/JNEUROSCI.0173-13.2013.
  • Krout KE, Loewy AD. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol. 2000;428:475-494. PMID:11074446; doi:10.1002/1096-9861(20001218)428:3%3c475::AID-CNE6%3e3.0.CO;2-9.
  • Cirelli C, Tononi G. On the functional significance of c-fos induction during the sleep-waking cycle. Sleep. 2000;23:453-469. PMID:10875553.
  • Torterolo P, Sampogna S, Chase MH. A restricted parabrachial pontine region is active during non-rapid eye movement sleep. Neuroscience. 2011;190:184-193. PMID:21704676; doi:10.1016/j.neuroscience.2011.06.018.
  • Felder RB, Mifflin SW. Modulation of carotid sinus afferent input to nucleus tractus solitarius by parabrachial nucleus stimulation. Circ Res. 1988;63:35-49. PMID:3383382; doi:10.1161/01.RES.63.1.35.
  • Hayward LF. Midbrain modulation of the cardiac baroreflex involves excitation of lateral parabrachial neurons in the rat. Brain Res. 2007;1145:117-127. PMID:17355874; doi:10.1016/j.brainres.2007.01.140.
  • Lara JP, Parkes MJ, Silva-Carvhalo L, Izzo P, Dawid-Milner MS, Spyer KM. Cardiovascular and respiratory effects of stimulation of cell bodies of the parabrachial nuclei in the anaesthetized rat. J Physiol. 1994;477:321-329. PMID:7932222; doi:10.1113/jphysiol.1994.sp020193.
  • Romanovsky AA. Skin temperature: its role in thermoregulation. Acta Physiol. 2014;210:498-507. PMID: 24716231; doi:10.1111/apha.12231.
  • Romeijn N, Raymann RJ, Møst E, Te Lindert B, Van Der Meijden WP, Fronczek R, Gomez-Herrero G, Van Someren EJ. Sleep, vigilance, and thermosensitivity. Pflugers Arch. 2012;463:169-176. PMID:22048563; doi:10.1007/s00424-011-1042-2.
  • Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Functional link between distal vasodilation and sleep-onset latency? Am J Physiol: Regul Integr Comp Physiol. 2000;278:R741-R748. PMID:10712296.
  • Raymann RJ, Swaab DF, Van Someren EJ. Skin deep: enhanced sleep depth by cutaneous temperature manipulation. Brain. 2008;131:500-513. PMID:18192289; doi:10.1093/brain/awm315.
  • Fronczek R, Raymann RJ, Romeijn N, Overeem S, Fischer M, van Dijk JG, Lammers GJ, Van Someren EJ. Manipulation of core body and skin temperature improves vigilance and maintenance of wakefulness in narcolepsy. Sleep. 2008;31:233-240. PMID:18274271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.