20,671
Views
126
CrossRef citations to date
0
Altmetric
Priority Review

Effects of temperature on feeding and digestive processes in fish

ORCID Icon & ORCID Icon
Pages 307-320 | Received 12 Mar 2020, Accepted 03 May 2020, Published online: 18 May 2020

References

  • Prosser CL, Nelson DO. The role of nervous systems in temperature adaptation of poikilotherms. Annu Rev Physiol. 1981;43(1):281–300.
  • van de Pol I, Flik G, Gorissen M. Comparative physiology of energy metabolism: fishing for endocrine signals in the early vertebrate pool. Front Endocrinol. 2017;8:36.
  • Kovacevic A, Latombe G, Chown SL. Rate dynamics of ectotherm responses to thermal stress. Proc R Soc B. 2019;286(1902):20190174.
  • Brett JR. Energetic responses of salmon to temperature. a study of some thermal relations in the physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerka). Am Zool. 1971;11(1):99–113.
  • Willmer P, Stone J, Johnston I. Environmental physiology of animals. Malden, MA, USA: Wiley-Blackwell; 2009.
  • Tattersall GJ, Sinclair BJ, Withers PC, et al. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr Physiol. 2012;2(3):2151–2202.
  • Kamunde C, Sappal R, Melegy TM. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. Plos One. 2019;14(7):e0219792.
  • Liu Y, Liu J, Ye S, et al. Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. Comp Biochem Physiol D. 2019;29:308–319.
  • Neubauer P, Andersen KH. Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology. Conserv Physiol. 2019;7(1):coz025–coz025.
  • Rosewarne PJ, Wilson JM, Svendsen JC. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. J Fish Biol. 2016;88(1):265–283.
  • Huey RB, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19(1):357–366.
  • Nati JJH, Lindström J, Halsey LG, et al. Is there a trade-off between peak performance and performance breadth across temperatures for aerobic scope in teleost fishes? Biol Letters. 2016;12(9):20160191.
  • Miller NA, Stillman JH. Physiological optima and critical limits. Nat Educ Knowledge. 2012;3(10):1.
  • Whitney JE, Al-Chokhachy R, Bunnell DB, et al. Physiological basis of climate change impacts on North American inland fishes. Fisheries. 2016;41(7):332–345.
  • Pörtner H-O, Bock C, Mark FC. Oxygen- and capacity-limited thermal tolerance. Bridging Ecol Physiol. 2017;3(4):5.
  • Sandersfeld T, Mark FC, Knust R. Temperature-dependent metabolism in Antarctic fish: do habitat temperature conditions affect thermal tolerance ranges? Polar Biol. 2017;40(1):141–149.
  • Lowe CH, Heath WG. Behavioral and physiological responses to temperature in the desert Pupfish Cyprinodon macularius. Physiol Zool. 1969;42(1):53–59.
  • Pörtner HO, Peck MA. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol. 2010;77(8):1745–1779.
  • Spicer JI, Morley SA, Bozinovic F. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen. Philos Trans Roy Soc B. 2019;374(1778):20190032.
  • Rezende EL, Bozinovic F. Thermal performance across levels of biological organization. Philos Trans Roy Soc B. 2019;374(1778):20180549.
  • Le M-H, Dinh K, Nguyen M, et al. Combined effects of a simulated marine heatwave and an algal toxin on a tropical marine aquaculture fish cobia (Rachycentron canadum). Aquac Res. 2020.
  • Beitinger TJ, Lutterschmidt WI. Measures of thermal tolerance. In: Farrell AP, Stevens ED, Cech JJeditors. Encyclopedia of fish physiology—from genome to environment. San Diego, CA: Academic Press; 2011. p. 1695–1702.
  • Fry FEJ. The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ, editors. Fish physiology. Vol. 6. Cambridge, Massachusetts: Academic Press; 1971. p. 1–98.
  • Elliott JM. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshw Biol. 1991;25(1):61–70.
  • Speers-Roesch B, Norin T, Driedzic WR. The benefit of being still: energy savings during winter dormancy in fish come from inactivity and the cold, not from metabolic rate depression. Proc R Soc B. 2018;285(1886):20181593.
  • Hayes J, Volkoff H. Characterization of the endocrine, digestive and morphological adjustments of the intestine in response to food deprivation and torpor in cunner, Tautogolabrus adspersus. Comp Biochem Physiol D. 2014;170:46–59.
  • Soyano K, Mushirobira Y. The mechanism of low-temperature tolerance in fish. In: Iwaya-Inoue M, Sakurai M, Uemura M, editors. Survival strategies in extreme cold and desiccation: adaptation mechanisms and their applications. Singapore: Springer Singapore; 2018. p. 149–164.
  • Gracheva EO, Bagriantsev SN. Evolutionary adaptation to thermosensation. Curr Opin Neurobiol. 2015;34:67–73.
  • Schurmann H, Christiansen JS. Behavioral thermoregulation and swimming activity of two arctic teleosts (subfamily gadinae)—the polar cod (Boreogadus saida) and the navaga (Eleginus navaga). J Therm Biol. 1994;19(3):207–212.
  • Beitinger TL, Bennett WA, McCauley RW. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish. 2000;58(3):237–275.
  • Nilsson J, Moltumyr L, Madaro A, et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet An Sci. 2019;8:100076.
  • Weidner J, Jensen CH, Giske J, et al. Hormones as adaptive control systems in juvenile fish. Biol Open. 2020;9(2):bio046144.
  • Hopkins M, Blundell JE. Energy metabolism and appetite control: separate roles for fat-free mass and fat mass in the control of food intake in humans. In: Harris RBS, editor. Appetite and food intake: central control. Boca Raton (FL): CRC Press/Taylor & Francis; 2017. p. 259–276.
  • Blundell JE, Finlayson G, Gibbons C, et al. The biology of appetite control: do resting metabolic rate and fat-free mass drive energy intake? Physiol Behav. 2015;152:473–478.
  • Speakman JR. If body fatness is under physiological regulation, then how come we have an obesity epidemic? Physiol. 2014;29(2):88–98.
  • Buentello JA, Gatlin DM, Neill WH. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture. 2000;182(3–4):339–352.
  • Ahmad T, Singh SP, Khangembam BK, et al. Food consumption and digestive enzyme activity of Clarias batrachus exposed to various temperatures. Aquacult Nutr. 2014;20(3):265–272.
  • Nguyen MV, Espe M, Conceição LEC, et al. The role of dietary methionine concentrations on growth, metabolism and N-retention in cobia (Rachycentron canadum) at elevated water temperatures. Aquacul Nutr. 2019;25(2):495–507.
  • Sharma J, Singh SP, Chakrabarti R. Effect of temperature on digestive physiology, immune-modulatory parameters, and expression level of Hsp and LDH genes in Catla catla (Hamilton, 1822). Aquaculture. 2017;479:134–141.
  • Folkedal O, Torgersen T, Olsen RE, et al. Duration of effects of acute environmental changes on food anticipatory behaviour, feed intake, oxygen consumption, and cortisol release in Atlantic salmon parr. Physiol Behav. 2012;105(2):283–291.
  • Hevrøy EM, Waagbø R, Torstensen BE, et al. Ghrelin is involved in voluntary anorexia in Atlantic salmon raised at elevated sea temperatures. Gen Comp Endocrinol. 2012;175(1):118–134.
  • Nadermann N, Seward RK, Volkoff H. Effects of potential climate change -induced environmental modifications on food intake and the expression of appetite regulators in goldfish. Comp Biochem Physiol D. 2019;235:138–147.
  • Smirnov AK, Smirnova ES. Behavior of perch fry Perca fluviatilis (Percidae) in a heterothermal environment at different levels of food availability. Biol Bull. 2019;46(9):1065–1074.
  • Shafland PL, Pestrak JM. Lower lethal temperatures for fourteen non-native fishes in Florida. Environ Biol Fish. 1982;7(2):149–156.
  • Elliott JM, Elliott JA. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol. 2010;77(8):1793–1817.
  • Rønnestad I, Yúfera M, Ueberschär B, et al. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquacult. 2013;5(s1):S59–S98.
  • Golovanov VK, Smirnov AK, Garina DV. Thermoregulatory behavior as a form of the temperature adaptation in freshwater teleosts in a boreal climatic zone. In: Carone S, editor. Teleosts: evolutionary development, diversity and behavioral ecology. Hauppauge, NY: Nova Science Pub.; 2014. p. 153–198.
  • Pavlov DS, Kasumyan AO. Sensory principles of the feeding behaviour of fishes. J Ichthyol. 1990;30(6):77–93.
  • Batty RS, Hoyt RD. The role of sense organs in the feeding behaviour of juvenile sole and plaice. J Fish Biol. 1995;47(6):931–939.
  • Liang XF, Kiu JK, Huang BY. The role of sense organs in the feeding behaviour of Chinese perch. J Fish Biol. 1998;52(5):1058–1067.
  • Springer AD, Agranoff BW. Effect of temperature on rate of goldfish optic nerve regeneration: A radioautographic and behavioral study. Brain Res. 1977;128(3):405–415.
  • Stacey NE, Kyle AL. Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish. Physiol Behav. 1983;30(4):621–628.
  • Liao IC, Chang EY. Role of sensory mechanisms in predatory feeding behavior of juvenile red drum Sciaenops ocellatus. Fish Sci. 2003;69(2):317–322.
  • Wysocki LE, Montey K, Popper AN. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish. J Exp Biol. 2009;212(19):3091.
  • Reilly CRL, Thompson SH. Temperature effects on low-light vision in juvenile rockfish (Genus Sebastes) and consequences for habitat utilization. J Comp Physiol A. 2007;193(9):943–953.
  • Raderman-Little R. The effect of temperature on the turnover of taste bud cells in catfish. Cell Proliferat. 1979;12(3):269–280.
  • Kasumyan AO, Sidorov SS, Pashchenko NI. Effect of water temperatures on taste sensitivity of fry of the stellate sturgeon Acipenser stellatus to free amino acids. Dokl Biol Sci. 1993;331:265–267.
  • Kasumyan AO. The taste system in fishes and the effects of environmental variables. J Fish Biol. 2019;95(1):155–178.
  • Toni M, Angiulli E, Miccoli G, et al. Environmental temperature variation affects brain protein expression and cognitive abilities in adult zebrafish (Danio rerio): A proteomic and behavioural study. J Proteomics. 2019;204:103396.
  • Fry FEJ, Hart JS. Cruising speed of goldfish in relation to water temperature. J Fish Res Board Can. 1948;7b(4):169–175.
  • Clark DS, Brown JA, Goddard SJ, et al. Activity and feeding behaviour of Atlantic cod (Gadus morhua) in sea pens. Aquaculture. 1995;131(1–2):49–57. .
  • Djurichkovic LD, Donelson JM, Fowler AM, et al. The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Sci Rep. 2019;9(1):13937.
  • Zhang L, Zhao Z-G, Fan Q-X. Effects of water temperature and initial weight on growth, digestion and energy budget of yellow catfish Pelteobagrus fulvidraco (Richardson, 1846). J Appl Ichthyol. 2017;33(6):1108–1117.
  • Higham TE, Stewart WJ, Wainwright PC. Turbulence, temperature, and turbidity: the ecomechanics of predator-prey interactions in fishes. Integr Comp Biol. 2015;55(1):6–20.
  • Coughlin DJ, Rome LC. The roles of pink and red muscle in powering steady swimming in scup, Stenotomus chrysops. Am Zool. 1996;36(6):666–677.
  • Moran O, Melani R. Temperature-dependent conduction properties in Arctic fish peripheral nerves. Polar Biol. 2001;24(1):9–15.
  • Fuiman L, Batty R. What a drag it is getting cold: partitioning the physical and physiological effects of temperature on fish swimming. J Exp Biol. 1997;200(12):1745.
  • Rønnestad I, Gomes AS, Murashita K, et al. Appetite-controlling endocrine systems in teleosts. Front Endocrinol. 2017;8:73.
  • Volkoff H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front Neurosci. 2016;10:540.
  • Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol. 2018;60(4):R171–R199.
  • Conde-Sieira M, Soengas JL. Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci. 2017;10:603.
  • Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mole Cell Endocrinol. 2019;497:110437.
  • Ware DM. Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size. J Fish Res Board Canada. 1972;29(8):1193–1201.
  • Deck CA, Honeycutt JL, Cheung E, et al. Assessing the functional role of leptin in energy homeostasis and the stress response in vertebrates. Front Endocrinol. 2017;8:63.
  • Michel M, Page-McCaw PS, Chen W, et al. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci U S A. 2016;113(11):3084.
  • Kehoe AS, Volkoff H. The effects of temperature on feeding and expression of two appetite-related factors, neuropeptide Y and cocaine- and amphetamine-regulated transcript, in Atlantic cod, Gadus morhua. J World Aquacult Soc. 2008;39(6):790–796.
  • Vikeså V, Nankervis L, Hevrøy EM. Appetite, metabolism and growth regulation in Atlantic salmon (Salmo salar L.) exposed to hypoxia at elevated seawater temperature. Aquacult Res. 2017;48(8):4086–4101.
  • Kullgren A, Jutfelt F, Fontanillas R, et al. The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp Biochem Physiol D. 2013;164(1):44–53.
  • Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav. 2013;120:54–63.
  • Madison BN, Tavakoli S, Kramer S, et al. Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. J Endocrinol. 2015;226(2):103–119.
  • Park JY, Han KH, Cho JK, et al. Survival rate and hematological responses with temperature changes of red spotted grouper, Epinephelus akaara in South Korea. Dev Reprod. 2016;20(2):103–112.
  • Jaxion-Harm J, Ladich F. Effects of temperature change on cortisol release by common carp Cyprinus carpio. J Fish Biol. 2014;84(4):1221–1227.
  • Olsson C. Gut anatomy. In: AP F, editor. Encyclopedia of fish physiology. San Diego: Academic Press; 2011. p. 1268–1275.
  • Le HTMD, Shao X, Krogdahl Å, et al. Intestinal function of the stomachless fish, Ballan wrasse (Labrus bergylta). Front Mar Sci. 2019;6:140.
  • Takei Y, Loretz CA. The gastrointestinal tract as an endocrine/neuroendocrine/paracrine organ: organization, chemical messengers and physiological targets. In: Grosell M, Farrell AP, Brauner CJ, editors. Fish physiology. Vol. 30. Cambridge, Massachusetts: Academic Press; 2010. p. 261–317.
  • Kapoor BG, Smit H, Verighina IA. The alimentary canal and digestion in teleosts. In: Russell FS, Yonge M, editors. Advances in marine biology. Vol. 13. Cambridge, Massachusetts: Academic Press; 1976. p. 109–239.
  • Miegel RP, Pain SJ, van Wettere WHEJ, et al. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture. 2010;308(3–4):145–151.
  • Nakagawa H. Temperature-dependent gastric evacuation rate of the Japanese delicate loach Niwaella delicata (Cobitidae). Ichthyol Res. 2018;65(1):172–174.
  • Temming A, Herrmann J-P. Gastric evacuation in horse mackerel. I. The effects of meal size, temperature and predator weight. J Fish Biol. 2001;58(5):1230–1245.
  • Das SK, Noor NM, Kai KS, et al. Effects of temperature on the growth, gastric emptying time, and oxygen consumption rate of mahseer (Tor tambroides) under laboratory conditions. Aquacult Rep. 2018;12:20–24.
  • De M, Ghaffar MA, Bakar Y, et al. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus ♀×E. lanceolatus ♂. Aquacult Rep. 2016;4:118–124.
  • Mazumder SK, Ghaffar MA, Das SK. Exploring the suitable temperature and diet for growth and gastric emptying time of juvenile malabar blood snapper (Lutjanus malabaricus Bloch & Schneider, 1801). Thalassas. 2019;35(1):29–41.
  • Yúfera M, Nguyen MV, Navarro-Guillén C, et al. Effect of increased rearing temperature on digestive function in cobia early juvenile. Comp Biochem Physiol D. 2019;230:71–80.
  • Solovyev MM, Izvekova GI. Seasonal changes in pH values in the intestine of fish from Lake Chany (West Siberia). Inland Water Biol. 2016;9(4):400–404.
  • Kemp P, Smith MW. Effect of temperature acclimatization on the fatty acid composition of goldfish intestinal lipids. Biochem J. 1970;117(1):9–15.
  • Vasemägi A, Visse M, Kisand V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. mSphere. 2017;2(6):e00418–17.
  • Wang AR, Ran C, Ringø E, et al. Progress in fish gastrointestinal microbiota research. Rev Aquacult. 2018;10(3):626–640.
  • Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Front Endocrinol. 2019;10:9.
  • Steell SC, Van Leeuwen TE, Brownscombe JW, et al. An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish (Pterois spp.). J Exp Biol. 2019;222(19):jeb209437.
  • Luo Y, Xie X. Effects of temperature on the specific dynamic action of the southern catfish, Silurus meridionalis. Comp Biochem Physiol D. 2008;149(2):150–156.
  • Tirsgaard B, Svendsen JC, Steffensen JF. Effects of temperature on specific dynamic action in Atlantic cod Gadus morhua. Fish Physiol Biochem. 2015;41(1):41–50.
  • Di Santo V, Lobel PS. Size affects digestive responses to increasing temperature in fishes: physiological implications of being small under climate change. Mar Ecol. 2016;37(4):813–820.
  • Pang X, Cao Z-D, Fu S-J. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis). Comp Biochem Physiol D. 2011;159(3):253–260.
  • Klinger DH, Dale JJ, Gleiss AC, et al. The effect of temperature on postprandial metabolism of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol D. 2016;195:32–38.
  • Amin MN, Carter CG, Katersky Barnes RS, et al. Protein and energy nutrition of brook trout (Salvelinus fontinalis) at optimal and elevated temperatures [Article]. Aquacul Nutr. 2016;22(3):527–540.
  • Bakke AM, Glover C, Krogdahl Å. 2 - Feeding, digestion and absorption of nutrients. In: Grosell M, Farrell AP, Brauner CJ, editors. Fish physiology. Vol. 30. Cambridge, Massachusetts: Academic Press; 2010. p. 57–110.
  • Kuz’mina VV. Classical and Modern conceptions of fish digestion. In: Cyrino JEP, Bureau D, Kapoor BG, editors. Feeding and digestive functions in fishes. Enfield, NH: Science Publishers; 2008. p. 85–154.
  • Male R, Lorens JB, Smalås AO, et al. Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. Eur J Biochem. 1995;232(2):677–685.
  • Gudmundsdóttir A, Gudmundsdóttir E, Óskarsson S, et al. Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem. 1993;217(3):1091–1097.
  • Klomklao S, Benjakul S. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: purification and physicochemical and biochemical characterization. Int J Biol Macromol. 2018;107:1864–1870.
  • Ahsan MN, Funabara D, Watabe S. Molecular cloning and characterization of two isoforms of trypsinogen from anchovy pyloric ceca. Mar Biotechnol. 2001;3(1):80–90.
  • Hidalgo MC, Urea E, Sanz A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquacult 1999;170(3–4):267–283.
  • Gioda CR, Pretto A, Freitas CDS, et al. Different feeding habits influence the activity of digestive enzymes in freshwater fish. Ciênc Rural. 2017;47(3):e20160113.
  • Gelman A, Kuz’mina V, Drabkin V, et al. Temperature adaptation of digestive enzymes in fish. In: Cyrino JEP, Bureau DP, Kapoor BGeditors. Feeding and digestive functions in fishes. Enfield, NH, USA: Science Publishers; 2008. p. 155–225.
  • Stefansson B, Sandholt GB, Gudmundsdottir Á. Elucidation of different cold-adapted Atlantic cod (Gadus morhua) trypsin X isoenzymes. Biochim Biophys Acta. 2017;1865(1):11–19.
  • Krogdahl Å, Sundby A, Bakke AM. Gut secretion and digestion. In: Farrell AP, editor. Encyclopedia of fish physiology. San Diego: Academic Press; 2011. p. 1301–1310.
  • Pereira LF, Peixoto MJ, Carvalho P, et al. Cross-effects of dietary probiotic supplementation and rearing temperature on growth performance, digestive enzyme activities, cumulative mortality and innate immune response in seabass (Dicentrarchus labrax). Aquacult Nutr. 2018;24(1):453–460.
  • Hani YMI, Marchand A, Turies C, et al. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): influence of body size and temperature. Plos One. 2018;13(4):e0194932.
  • Einarsson S, Jönsson AC, Davies PS. Seasonal variation in trypsin activity in juvenile Atlantic salmon upper and lower modal groups. J Fish Biol. 1997;51(6):1209–1218.
  • Ma F, Yang Y, Jiang M, et al. Digestive enzyme activity of the Japanese grenadier anchovy Coilia nasus during spawning migration: influence of the migration distance and the water temperature. J Fish Biol. 2019;95(5):1311–1319.
  • Fang J, Tian X, Dong S. The influence of water temperature and ration on the growth, body composition and energy budget of tongue sole (Cynoglossus semilaevis). Aquaculture. 2010;299(1–4):106–114.
  • Cai L-S, Wang L, Song K, et al. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture. 2020;516:734615.
  • Jobling M. The influences of feeding on the metabolic rate of fishes: a short review. J Fish Biol. 1981;18(4):385–400.
  • McKenzie DJ, Axelsson M, Chabot D, et al. Conservation physiology of marine fishes: state of the art and prospects for policy. Conserv Physiol. 2016;4(1):cow046–cow046.
  • Treberg JR, Killen SS, MacCormack TJ, et al. Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: methods, proxies, and new perspectives. Comp Biochem Physiol D. 2016;202:10–22.
  • Jobling M. Temperature and growth: modulation of growth rate via temperature change. In: Wood CM, McDonald DG, editors. Global warming: implications for freshwater and marine fish. Society for experimental biology seminar series. Cambridge: Cambridge University Press; 1997. p. 225–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.