1,137
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Beyond heat exposure — new methods to quantify and link personal heat exposure, stress, and strain in diverse populations and climates: The journal Temperature toolbox

ORCID Icon, ORCID Icon & ORCID Icon
Pages 358-378 | Received 04 Aug 2022, Accepted 12 Nov 2022, Published online: 18 Dec 2022

References

  • Ebi KL, Capon A, Berry P, et al. Hot weather and heat extremes: health risks. Lancet. 2021;398(10301):698–708. doi:10.1016/S0140-6736(21)01208-3.
  • Kuras E, Richardson MB, Calkins MM, et al. Opportunities and challenges for personal heat exposure research. Environ Health Perspect. 2017;125(8):085001. doi:10.1289/EHP556..
  • Grundstein A, Vanos J. There is no ’swiss army knife’of thermal indices: the importance of considering ’why?’and ’for whom?’when modelling heat stress in sport. Br J Sports Med. 2021;55(15):822–824. doi:10.1136/bjsports-2020-102920.
  • Nazarian N, Lee JKW. Personal assessment of urban heat exposure: a systematic review. Environ Res Lett. 2021;16(3):033005. doi:10.1088/1748-9326/abd350.
  • Hondula DM, Kuras ER, Betzel S, et al. Novel metrics for relating personal heat exposure to social risk factors and outdoor ambient temperature. Environ Int. 2021;146:106271. doi:10.1016/j.envint.2020.106271.
  • Vanos JK, Baldwin JW, Jay O, et al. Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nat Commun. 2020;11(1):10–14. doi:10.1038/s41467-020-19994-1.
  • Jay O, Capon A, Berry P, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet. 2021;398(10301):709–724. doi:10.1016/S0140-6736(21)01209-5.
  • Tuholske C, Caylor K, Funk C, et al. Global urban population exposure to extreme heat. Proc Natl Acad Sci U S A. 2021;118(41):e2024792118. doi:10.1073/pnas.2024792118.
  • Lioy PJ. Exposure science: a view of the past and milestones for the future. Environ Health Perspect. 2010;118(8):1081–1090. doi:10.1289/ehp.0901634.
  • Bligh J, Johnson KG. Glossary of terms for thermal physiology. J Appl Physiol. 1973;35(6):941–961. doi:10.1152/jappl.1973.35.6.941.
  • Oke TR, Mills G, Christen A, et al. Urban climates. 1st ed. Cambridge: Cambridge University Press; 2017. doi:10.1017/9781139016476.
  • Kenny GP, Poirier MP, Metsios GS, et al. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature. 2017;4(1):79–88. doi:10.1080/23328940.2016.1230171.
  • Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–647. doi:10.1002/cphy.c140017.
  • Gagge AP, Gonzalez RR. Mechanisms of Heat Exchange: Biophysics and Physiology. Handbook of Physiology, Environmental Physiology. American Physiological Society. 1996: 45–84. doi:10.1002/cphy.cp040104
  • Ioannou LG, Gkikas G, Mantzios K Risk assessment for heat stress during work and leisure Tsatsakis, Aristides M, et al. Chapter 32: Toxicological Risk Assessment and Multi-System Health Impacts from Exposure 1st. Academic Press. 2021;373–385. doi:10.1016/B978-0-323-85215-9.00004-0.
  • Ioannou LG, Foster J, Morris NB, et al. Occupational heat strain in outdoor workers: A comprehensive review and meta-analysis. Temperature. 2022;9(1):67–102. doi:10.1080/23328940.2022.2030634.
  • Jetté M, Sidney K, Blümchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–565. doi:10.1002/clc.4960130809.
  • Cramer MN, Jay O. Cores of reproducibility in physiology partitional calorimetry. J Appl Physiol. 2019;126(2):267–277. doi:10.1152/japplphysiol.00191.2018.
  • Cheshire WP. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci Basic Clin. 2016;196:91–104. doi:10.1016/j.autneu.2016.01.001.
  • Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol. 2013;3(4):1689–1719. doi:10.1002/cphy.c130011.
  • Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29(1):41–55. doi:10.1146/annurev.publhealth.29.020907.090843.
  • Foster J, Hodder SG, Lloyd AB, et al. Individual responses to heat stress: implications for hyperthermia and physical work capacity. Front Physiol. 2020;11(541483). doi:10.3389/fphys.2020.541483.
  • Flouris AD, McGinn R, Poirier MP, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature. 2018;5(1):86–99. doi:10.1016/j.autneu.2016.01.001.
  • Vanos JK. Children’s health and vulnerability in outdoor microclimates: a comprehensive review. Environ Int. 2015;76:1–15. doi:10.1016/j.envint.2014.11.016.
  • Ramsay EE, Fleming GM, Faber PA, et al. Chronic heat stress in tropical urban informal settlements. iScience. 2021;24(11):103248. doi:10.1016/j.isci.2021.103248.
  • Samuelson H, Baniassadi A, Lin A, et al. Housing as a critical determinant of heat vulnerability and health. Sci Total Environ. 2020;720. doi:10.1016/j.scitotenv.2020.137296.
  • Escandón R, Suárez R, Alonso A, et al. Is indoor overheating an upcoming risk in southern Spain social housing stocks? Predictive assessment under a climate change scenario. Build Environ. 2022;207. doi:10.1016/j.buildenv.2021.108482.
  • Longo J, Kuras E, Smith H, et al. Technology use, exposure to natural hazards, and being digitally invisible : implications for policy analytics. Policy & Internet. 2017;9(1):76–108. doi:10.1002/poi3.144.
  • Nerbass FB, Pecoits-Filho R, Clark WF, et al. Occupational heat stress and kidney health: from farms to factories. Kidney Int Reports. 2017;2(6):998–1008. doi:10.1016/j.ekir.2017.08.012.
  • Flouris AD, Dinas PC, Ioannou LG, et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Heal. 2018;2(12):e521–e531. doi:10.1016/S2542-5196(18)30237-7.
  • Kjellstrom T, Briggs D, Freyberg C, et al. Human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu Rev Public Health. 2016;37(1):97–112. doi:10.1146/annurev-publhealth-032315-021740.
  • Castillo F, Mora AM, Kayser GL, et al. Environmental health threats to latino migrant farmworkers. Annu Rev Public Health. 2020;42(1):257–276. doi:10.1146/annurev-publhealth-012420-105014.
  • Moohialdin A, Trigunarsyah B, Islam MS, et al. Physiological impacts on construction workers under extremely hot and humid weather. Int Arch Occup Environ Health. 2022;95(2):315–329. doi:10.1007/s00420-021-01785-w.
  • Runkle JD, Cui C, Fuhrmann C, et al. Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern U.S. Environ Int. 2019;129(August 2019):229–238. doi:10.1016/j.envint.2019.05.026citat.
  • Ioannou LG, Mantzios K, Tsoutsoubi L, et al. Occupational heat stress: multi-country observations and interventions. Int J Environ Res Public Health. 2021;18(12):6303. doi:10.3390/ijerph18126303.
  • Jay O, Brotherhood JR. Occupational heat stress in Australian workplaces. Temperature. 2016;3(3):394–411. doi:10.1080/23328940.2016.1216256.
  • Cheng W, Li D, Liu Z, et al. Approaches for identifying heat-vulnerable populations and locations: a systematic review. Sci Total Environ. 2021;799:149417. doi:10.1016/j.scitotenv.2021.149417.
  • Brimicombe C, Di Napoli C, Cornforth R, et al. Borderless heat hazards with bordered impacts. Earth’s Futur. 2021;9(9). doi: 10.1029/2021EF002064.
  • Bernhard MC, Kent ST, Sloan ME, et al. Measuring personal heat exposure in an urban and rural environment. Environ Res. 2015;137:410–418. doi:10.1016/j.envres.2014.11.002.
  • Harlan SL, Brazel AJ, Prashad L, et al. Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med. 2006;63(11):2847–2863 doi:10.1016/j.socscimed.2006.07.030.
  • Karner A, Hondula DM, Vanos JK. Heat exposure during non-motorized travel: implications for transportation policy under climate change. J Transp Heal. 2015;2(4):451–459. doi:10.1016/j.jth.2015.10.001.
  • Kuras ER, Hondula DM. Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood : insights from a new approach to measuring heat exposure. Int J Biometeorol. 2015;59(10):1363–1372. doi:10.1007/s00484-014-0946-x.
  • Ioannou LG, Mantzios K, Tsoutsoubi L, et al. Indicators to assess physiological heat strain–Part 1: Systematic review. Temperature. 2022; 9(3) :227–262. doi:10.1080/23328940.2022.2037376.
  • Ioannou LG, Tsoutsoubi L, Mantzios K, et al. Indicators to assess physiological heat strain–Part 3: Multi-country field evaluation and consensus recommendations. Temperature. 2022;9(3) :274–291. doi:10.1080/23328940.2022.2044739.
  • Dufour A, Candas V. Ageing and thermal responses during passive heat exposure: sweating and sensory aspects. Eur J Appl Physiol. 2007;100(1):19–26. doi:10.1007/s00421-007-0396-9.
  • Inoue Y, Nakao M, Araki T, et al. Regional differences in the sweating responses of older and younger men. J Appl Physiol. 1991;71(6):2453–2459. doi:10.1152/jappl.1991.71.6.2453.
  • Solís P, Vanos JK, Forbis RE. The decision-making/accountability spatial incongruence problem for research linking environmental science and policy. Geogr Rev. 2017;107(4):680–704. doi:10.1111/gere.12240.
  • Hass AL, McCanless K, Cooper W, et al. Heat exposure misclassification : do current methods of classifying diurnal range in individually experienced temperatures and heat indices accurately reflect personal exposure ? Int J Biometeorol. 2022;66(7):1339–1348. doi:10.1007/s00484-022-02280-8.
  • Ioannou LG, Mantzios K, Tsoutsoubi L, et al. Effect of a simulated heat wave on physiological strain and labour productivity. Int J Environ Res Public Health. 2021;18(6):3011. doi:10.3390/ijerph18063011.
  • González-alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):45–53. doi:10.1113/jphysiol.2007.142158.
  • Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(S1):20–38. doi:10.1111/sms.12408.
  • Sugg MM, Runkle JD, Dow K , et al. Individually experienced heat index in a coastal Southeastern US city among an occupationally exposed population. Int J Biometeorol. 2022;66(8):1665–1681. doi:10.1007/s00484-022-02309-y.
  • Hass AL, Ellis KN. Using wearable sensors to assess how a heatwave affects individual heat exposure, perceptions, and adaption methods. Int J Biometeorol. 2019;63(12):1585–1595. doi:10.1007/s00484-019-01770-6.
  • Sugg MM, Fuhrmann CM, Runkle JD. Temporal and spatial variation in personal ambient temperatures for outdoor working populations in the southeastern USA. Int J Biometeorol. 2018;62(8):1521–1534. doi:10.1007/s00484-018-1553-z.
  • Ioannou LG, Tsoutsoubi L, Mantzios K, et al. The impacts of sun exposure on worker physiology and cognition: multi-country evidence and interventions. Int J Environ Res Public Health. 2021;18(14):7698. doi:10.3390/ijerph18147698.
  • Sulzer M, Christen A, Matzarakis A. A low-cost sensor network for real-time thermal stress monitoring and communication in occupational contexts. Sensors. 2022;22(5):1828. Published online 2022. doi:10.3390/s22051828.
  • Hwang S, Lee SH. Wristband-type wearable health devices to measure construction workers’ physical demands. Autom Constr. 2017;83(June):330–340. doi:10.1016/j.autcon.2017.06.003.
  • Campbell M, Marek L, Hobbs M. Reconsidering movement and exposure: towards a more dynamic health geography. Geogr Compass. 2021;15(6):e12566. doi:10.1111/gec3.12566.
  • Winslow C-EA, Herrington LP, Gagge AP. Physiological reactions of the human body to varying environmental temperatures. Am J Physiol Content. 1937;120(1):1–22. doi:10.1152/ajplegacy.1937.120.1.1.
  • Morris NB, Chaseling GK, English T, et al. Electric fan use for cooling during hot weather: a biophysical modelling study. Lancet Planet Heal. 2021;5(6):e368–e377. doi:10.1016/S2542-5196(21)00136-4.
  • Drinkwater BL, Bedi JF, Loucks AB, et al. Sweating sensitivity and capacity of women in relation to age. J Appl Physiol. 1982;53(3):671–676. doi:10.1152/jappl.1982.53.3.671.
  • Wilcox S, Marion W. Users Manual for TMY3 Data Sets. NREL/TP-581-43156. NREL. 2008.
  • Middel A, Krayenhoff ES. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: introducing the MaRTy observational platform. Sci Total Environ. 2019;687:137–151. doi:10.1016/j.scitotenv.2019.06.085.
  • NWS. NWS Phoenix Heat Page. Historical heat warning dates. Published 2022. Cited 2022 Oct 5. https://www.weather.gov/psr/heat
  • Fiala D, Havenith G, Bröde P, et al. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. 2012;56(3):429–441. doi:10.1007/s00484-011-0424-7.
  • ISO. ISO 7933:2004 ergonomics of the thermal environment - analytical determination and interpretation of heat stress using calculation of the predicted heat strain.2nd. Geneva: International Organization for Standardization.2004. pp. 34.
  • Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581 doi:10.1249/MSS.0b013e31821ece12.
  • Brotherhood JR. Heat stress and strain in exercise and sport. J Sci Med Sport. 2008;11(1):6–19. doi:10.1016/j.jsams.2007.08.017.
  • Cramer MN, Jay O. Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin. 2016;196:3–13. doi:10.1249/MSS.0b013e31821ece12.
  • Havenith G, Fiala D. Thermal indices and thermophysiological modeling for heat stress. Compr Physiol. 2016;6(1):255–302. doi:10.1002/cphy.c140051.
  • Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(S1):52–64. doi:10.1111/sms.12349.
  • Hosokawa Y, Adams WM, Casa DJ, et al. Roundtable on preseason heat safety in secondary school athletics: environmental monitoring during activities in the heat. J Athl Train. 2021;56(4):362–371. doi:10.4085/1062-6050-0067.20.
  • McGregor GR, Vanos JK. Heat: a primer for public health researchers. Public Health. 2018;161:138–146. doi:10.1016/j.puhe.2017.11.005.
  • Middel A, AlkhaLed S, Schneider FA, et al. 50 Grades of Shade. Bull Am Meteorol Soc. 2021;102(9) :E1805–E1820. doi:10.1175/BAMS-D-20-0193.1.
  • Middel A, Selover N, Hagen B, et al. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int J Biometeorol. 2016;60(12):1849–1861. doi:10.1007/s00484-016-1172-5.
  • Tsunematsu N, Yokoyama H, Honjo T, et al. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Clim. 2016;17 September 2016 :67–79. doi:10.1016/j.uclim.2016.03.002.
  • Brown RD, Gillespie TJ. Microclimate landscape design: creating thermal comfort and energy efficiency. New York: John Wiley & Sons; 1995.
  • Lachapelle JA, Krayenhoff ES, Middel A, et al. Landscape and Urban Planning Maximizing the pedestrian radiative cooling benefit per street tree. Landsc Urban Plan. 2023;230(June 2022):104608. doi:10.1016/j.landurbplan.2022.104608.
  • Vecellio DJ, Wolf ST, Cottle RM, et al. Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). J Appl Physiol. 2022;132(2):340–345. doi:10.1152/japplphysiol.00738.2021.
  • Vargas NT, Chapman CL, Ji W, et al. Increased skin wetness independently augments cool-seeking behaviour during passive heat stress. J Physiol. 2020;598(13):2775–2790. doi:10.1113/JP279537.
  • Green H, Bailey J, Schwarz L, et al. Impact of heat on mortality and morbidity in low and middle income countries: a review of the epidemiological evidence and considerations for future research. Environ Res. 2019;171(September 2018):80–91. doi:10.1016/j.envres.2019.01.010.
  • Morris NB, English T, Hospers L, et al. The effects of electric fan use under differing resting heat index conditions: a clinical trial. Ann Intern Med. 2019;171(9):675–677. doi:10.7326/M19-0512.
  • Nazarian N, Krayenhoff ES, Bechtel B, et al. Integrated assessment of urban overheating impacts on human life. Earth’s Future. 2022(10):8. ISSN:. doi:10.1029/2022EF002682. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022EF002682
  • Krayenhoff ES, Broadbent AM, Zhao L, et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ Res Lett. 2021;16(5):053007. doi:10.1088/1748-9326/abdcf1.
  • Haraway D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Feminist Studies. 1988;14(3):575–599. doi:10.2307/3178066.
  • Harding SG. The feminist standpoint theory reader: intellectual and political controversies. New York: Routledge; 2004.
  • Piil JF, Christiansen L, Morris NB, et al. Direct exposure of the head to solar heat radiation impairs motor-cognitive performance. Sci Rep. 2020;10(1):7812. doi:10.1038/s41598-020-64768-w.
  • Minor K, Bjerre-Nielsen A, Jonasdottir SS, et al. Rising temperatures erode human sleep globally. One Earth. 2022;5(5):534–549. doi:10.1016/j.oneear.2022.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.