709
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 137-156 | Received 16 Aug 2023, Accepted 03 Jan 2024, Published online: 08 Feb 2024

References

  • Pointon M, Duffield R. Cold water immersion recovery after simulated collision sport exercise. Med Sci Sports Exerc. 2012;44:206–216. doi: 10.1249/MSS.0b013e31822b0977
  • Vieira A, Siqueira A, Ferreira-Junior J, et al. The effect of water temperature during cold-water immersion on recovery from Exercise-Induced Muscle Damage. Int J Sports Med. 2016;37:937–943. doi: 10.1055/s-0042-111438
  • De Paula F, Escobar K, Ottone V, et al. Post-exercise cold-water immersion improves the performance in a subsequent 5-km running trial. Temperature. 2018;5:359–370. doi: 10.1080/23328940.2018.1495023
  • Allan R, Akin B, Sinclair J, et al. Athlete, coach and practitioner knowledge and perceptions of post-exercise cold-water immersion for recovery: a qualitative and quantitative exploration. Sport Sci Health. 2022;18:699–713. doi: 10.1007/s11332-021-00839-3
  • Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46:1095–1109. doi: 10.1007/s40279-016-0483-3
  • Tipton MJ, Collier N, Massey H, et al. Cold water immersion: kill or cure? cold water immersion: kill or cure? Exp Physiol. 2017;102:1335–1355. doi: 10.1113/EP086283
  • Lee DT, Toner MM, McArdle WD, et al. Thermal and metabolic responses to cold-water immersion at knee, hip, and shoulder levels. J Appl Physiol. 1997;82:1523–1530. doi: 10.1152/jappl.1997.82.5.1523
  • Landsberg L. Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev. 2012;13:97–104. doi: 10.1111/j.1467-789X.2012.01040.x
  • Romet TT. Mechanism of afterdrop after cold water immersion. J Appl Physiol. 1988;65:1535–1538. doi: 10.1152/jappl.1988.65.4.1535
  • Savard GK, Cooper KE, Veale WL, et al. Peripheral blood flow during rewarming from mild hypothermia in humans. J Appl Physiol. 1985;58:4–13. doi: 10.1152/jappl.1985.58.1.4
  • Giesbrecht GG, Goheen MSL, Johnston CE, et al. Inhibition of shivering increases core temperature afterdrop and attenuates rewarming in hypothermic humans. J Appl Physiol. 1997;83:1630–1634. doi: 10.1152/jappl.1997.83.5.1630
  • Williams AB. Rewarming of healthy volunteers after induced mild hypothermia: a healthy volunteer study. Emerg Med J. 2005;22:182–184. doi: 10.1136/emj.2003.007963
  • Eyolfson DA, Tikuisis P, Xu X, et al. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol. 2001;84:100–106. doi: 10.1007/s004210000329
  • Mekjavic IB, Bligh J. The increased oxygen uptake upon immersion: the raised external pressure could be a causative factor. Eur J Appl Physiol. 1989;58:556–562. doi: 10.1007/BF02330712
  • Šrámek P, Šimečková M, Janskỳ L, et al. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81:436–442. doi: 10.1007/s004210050065
  • Hemingway A. Shivering. Physiol Rev. 1963;43:397–422. doi: 10.1152/physrev.1963.43.3.397
  • Haman F. Metabolic requirements of shivering humans. Front Biosci. 2010;S2:1155–1168. doi: 10.2741/s124
  • Haman F, Blondin DP. Shivering thermogenesis in humans: origin, contribution and metabolic requirement. Temperature. 2017;4:217–226. doi: 10.1080/23328940.2017.1328999
  • Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol. 2018 cited 2022 Oct 10;153–173. https://linkinghub.elsevier.com/retrieve/pii/B9780444639127000102
  • Autry JM, Thomas DD, Espinoza-Fonseca LM. Sarcolipin promotes uncoupling of the SERCA Ca2+ pump by inducing a structural rearrangement in the Energy-Transduction Domain. Biochemistry. 2016;55:6083–6086. doi: 10.1021/acs.biochem.6b00728
  • Townsend LK, Wang D, Wright DC, et al. Skeletal muscle, not adipose tissue, mediates cold-induced metabolic benefits. Nat Metab. 2023 [cited 2023 Jul 11];5(7):1074–1077. https://www.nature.com/articles/s42255-023-00837-4
  • Lagarde D. Rôle des flux de lactate dans le métabolisme des tissus adipeux beiges et bruns [ PhD Thesis]. Toulouse 3; 2020.
  • Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–413. doi: 10.1016/j.cell.2012.09.010
  • Holets HM, Kerna NA, Chawla S, et al. Brown adipose tissue: a comprehensive review. EC Gastroenterol Dig Syst. 2022;26–40.
  • Datta A, Tipton M. Respiratory responses to cold water immersion: neural pathways, interactions, and clinical consequences awake and asleep. J Appl Physiol. 2006;100:2057–2064. doi: 10.1152/japplphysiol.01201.2005
  • Tipton MJ. The initial responses to cold-water immersion in man. Clin Sci (Lond). 1989;77:581–588. doi: 10.1042/cs0770581
  • Keatinge WR, Evans M. The respiratory and cardiovascular response to immersion in cold and warm water. Q J Exp Physiol Cogn Med Sci. 1961;46:83–94. doi: 10.1113/expphysiol.1961.sp001519
  • Keatinge WR, McIlroy MB, Goldfien A. Cardiovascular responses to ice-cold showers. J Appl Physiol. 1964;19:1145–1150. doi: 10.1152/jappl.1964.19.6.1145
  • Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–715. doi: 10.1016/S0092-8674(02)00652-9
  • Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019;81:285–308. doi: 10.1146/annurev-physiol-020518-114546
  • McLellan T. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods. Int J Sports Med. 1985;6:30–35. doi: 10.1055/s-2008-1025809
  • Hays A, Nicol C, Bertin D, et al. Physiological and mechanical indices serving the new cross-country olympic mountain bike performance. Int J Sports Physiol Perform. 2021;16:1008–1013. doi: 10.1123/ijspp.2020-0319
  • Brughelli M, Van Leemputte M. Reliability of power output during eccentric sprint cycling. J Strength Cond Res. 2013;27:76–82. doi: 10.1519/JSC.0b013e31824f2055
  • Davranche K, Giraud D, Hays A, et al. High-intensity physical activity enhances cognitive decision processes [Internet]. Neuroscience. [cited 2023 Oct 16]. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.02.14.528466
  • Peiffer JJ, Abbiss CR, Nosaka K, et al. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12:91–96. doi: 10.1016/j.jsams.2007.10.011
  • Peiffer JJ, Abbiss CR, Watson G, et al. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27:987–993. doi: 10.1080/02640410903207424
  • Vaile J, OHagan C, Stefanovic B, et al. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2011;45:825–829. doi: 10.1136/bjsm.2009.067272
  • Dong L, Wang J, Jiang C. Validation of the use of foreign gas rebreathing method for non-invasive determination of cardiac output in heart disease patients. J Zhejiang Univ Sci B. 2005;6:1157–1162. doi: 10.1631/jzus.2005.B1157
  • Jones B, Hesford CM, Cooper CE. The use of portable NIRS to measure muscle oxygenation and haemodynamics during a Repeated Sprint Running Test. In: Van Huffel S, Naulaers G Caicedo A, editors. Oxyg transp tissue XXXV [Internet]. NewYork,NY: Springer New York; 2013 cited 2022 Jul 8. pp. 185–191. doi: 10.1007/978-1-4614-7411-1_26
  • Wang B, Xu G, Tian Q, et al. Differences between the vastus lateralis and gastrocnemius lateralis in the assessment ability of breakpoints of muscle oxygenation for aerobic capacity indices during an incremental cycling exercise. J Sports Sci Med. 2012;8.
  • Mawhinney C, Jones H, Joo CH, et al. Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc. 2013;45:2277–2285. doi: 10.1249/MSS.0b013e31829d8e2e
  • Bates D, Maechler M, Bolker B, et al. lme4: linear mixed-effects models using “eigen” and S4 classes. R Package Version. 2020;1:15.
  • Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13
  • Macchi R, Santuz A, Hays A, et al. Sex influence on muscle synergies in a ballistic force-velocity test during the delayed recovery phase after a graded endurance run. Heliyon. 2022;8:e09573. doi: 10.1016/j.heliyon.2022.e09573
  • Hopkins WG, Marshall SW, Batterham AM, et al. Progressive Statistics for Studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–12. doi: 10.1249/MSS.0b013e31818cb278
  • Friston K, Ashburner J, Kiebel S, et al. editors. Statistical parametric mapping [Internet]. London:Academic Press; 2007. Available from: https://doi.org/10.1016/B978-012372560-8/50000-0
  • Pataky TC. One-dimensional statistical parametric mapping in Python. Comput Methods Biomech Biomed Engin. 2012;15:295–301. doi: 10.1080/10255842.2010.527837
  • Crampton D, Egaña M, Donne B, et al. Including arm exercise during a cold water immersion recovery better assists restoration of sprint cycling performance: active immersion recovery for sprint cycling. Scand J Med Sci Sports. 2014;24:e290–e298. doi: 10.1111/sms.12169
  • Mawhinney C, Heinonen I, Low DA, et al. Changes in quadriceps femoris muscle perfusion following different degrees of cold-water immersion. J Appl Physiol. 2020;128:1392–1401. doi: 10.1152/japplphysiol.00833.2019
  • Otte JW, Merrick MA, Ingersoll CD, et al. Subcutaneous adipose tissue thickness alters cooling time during cryotherapy. Arch Phys Med Rehabil. 2002;83:1501–1505. doi: 10.1053/apmr.2002.34833
  • Ran C, Hoon MA, Chen X. The coding of cutaneous temperature in the spinal cord. Nat Neurosci. 2016;19:1201–1209. doi: 10.1038/nn.4350
  • Hayward JS, French CD. Hyperventilation response to cold water immersion: reduction by staged entry. Aviat Space Environ Med. 1989;60:1163–1165.
  • Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue. Diabetes. 2013;62:1783–1790. doi: 10.2337/db12-1430
  • Parsons KC. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. 2nd ed. London: Taylor & Francis; 2006.
  • Roberts LA, Muthalib M, Stanley J, et al. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise. Am J Physiol-Regul Integr Comp Physiol. 2015;309:R389–R398. doi: 10.1152/ajpregu.00151.2015
  • Ihsan M, Watson G, Lipski M, et al. Influence of postexercise cooling on muscle oxygenation and blood volume changes. Med Sci Sports Exerc. 2013;45:876–882. doi: 10.1249/MSS.0b013e31827e13a2
  • Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature. 2020;7:363–388. doi: 10.1080/23328940.2020.1769006
  • Mawhinney C, Jones H, Low DA, et al. Influence of cold-water immersion on limb blood flow after resistance exercise. Eur J Sport Sci. 2017;17:519–529. doi: 10.1080/17461391.2017.1279222
  • Bhambhani YN. Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Can J Appl Physiol. 2004;29:504–523. doi: 10.1139/h04-033