2,092
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Lower extremity joints and their contributions to whole limb extension

, , , &
Pages 1-8 | Received 11 Jan 2019, Accepted 03 Nov 2019, Published online: 04 Dec 2019

References

  • Anderson DE, Madigan ML, Nussbaum MA. 2007. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech. 40(14):3105–3113. doi:10.1016/j.jbiomech.2007.03.022.
  • Bober T, Kulig K, Burnfield JM, Pietrazewski B. 2002. Predictive torque equations for joints of the extremities. Acta Bioeng Biomech. 4(2):49–61.
  • Caruthers EJ, Thompson JA, Chaudhari AMW, Schmitt LC, Best TM, Saul KR, Siston RA. 2016. Muscle forces and their contributions to vertical and horizontal acceleration of the center of mass during sit-to-stand transfer in young, healthy adults. J Appl Biomech. 32(5):487–503. doi:10.1123/jab.2015-0291.
  • Dallmann CJ, Dürr V, Schmitz J. 2016. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc R Soc B. 283(1823):20151708. doi:10.1098/rspb.2015.1708.
  • DeSmitt HJ, Domire ZJ. 2016. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength. Comput Methods Biomech Biomed Engin. 19(16):1730–1737. doi:10.1080/10255842.2016.1183124.
  • Gordon AM, Huxley AF, Julian FJ. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 184(1):170–192. doi:10.1113/jphysiol.1966.sp007909.
  • Gruben KG, López-Ortiz C. 2000. Characteristics of the force applied to a pedal during human pushing efforts: emergent linearity. J Mot Behav. 32(2):151–162. doi:10.1080/00222890009601367.
  • Gu Y, Lee CSG, Yao B. 2015. Feasible center of mass dynamic manipulability of humanoid robots. In 2015 IEEE International Conference on Robotics and Automation (ICRA). p. 5082–5087. doi:10.1109/ICRA.2015.7139906.
  • Hagen DA, Valero-Cuevas FJ. 2017. Similar movements are associated with drastically different muscle contraction velocities. J Biomech. 59:90–100. doi:10.1016/j.jbiomech.2017.05.019.
  • Hahn D. 2011. Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics. J Strength Cond Res. 25(6):1622–1631. doi:10.1519/JSC.0b013e3181ddfce3.
  • Hamner SR, Delp SL. 2013. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech. 46(4):780–787. doi:10.1016/j.jbiomech.2012.11.024.
  • Hanavan J. 1964. A mathematical model of the human body (No. AFIT-GA-PHYS-64-3). Air Force Aerospace Medical Research Lab Wright-Patterson AFB OH. http://www.dtic.mil/docs/citations/AD0608463
  • Hasegawa R, Islam MM, Lee SC, Koizumi D, Rogers ME, Takeshima N. 2008. Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults. Clin Rehabil. 22(10–11):902–910. doi:10.1177/0269215508094713.
  • Hof AL. 2001. The force resulting from the action of mono- and biarticular muscles in a limb. J Biomech. 34(8):1085–1089. doi:10.1016/S0021-9290(01)00056-2.
  • Hof AL, Otten E. 2005. Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data. Gait Posture. 22(3):182–188. doi:10.1016/j.gaitpost.2004.08.007.
  • Hugh-Jones P. 1947. The effect of limb position in seated subjects on their ability to utilize the maximum contractile force of the limb muscles. J Physiol. 105(4):332–344. doi:10.1113/jphysiol.1947.sp004174.
  • Jin L, Hahn ME. 2018. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds. Hum Mov Sci. 58:1–9. doi:10.1016/j.humov.2018.01.004.
  • Kaya M, Leonard TR, Herzog W. 2006. Control of ground reaction forces by hindlimb muscles during cat locomotion. J Biomech. 39(15):2752–2766. doi:10.1016/j.jbiomech.2005.10.012.
  • Kepple TM, Siegel KL, Stanhope SJ. 1997. Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture. 6(1):1–8. doi:10.1016/S0966-6362(96)01094-6.
  • Kulig K, Andrews JG, Hay JG. 1984. Human Strength Curves. Exerc Sport Sci Rev. 12(1):417.
  • Lee T-H. 2007. Pushing strengths under restricted space. Hum Factors Ergon Manuf Serv Ind. 17(1):95–102. doi:10.1002/hfm.20066.
  • Macon N, Spitzbart A. 1958. Inverses of Vandermonde Matrices. Am Math Mon. 65(2):95–100. doi:10.2307/2308881.
  • Masako A, Masayoshi O, Kei M, Chise K, Minoru H, Ryuya Y, Tsugutake S. 2007. Effect of single and multi‐joint lower extremity muscle strength on the functional capacity and ADL/IADL status in Japanese community‐dwelling older adults. Nurs Health Sci. 9(3):168–176. doi:10.1111/j.1442-2018.2007.00317.x.
  • Pääsuke M, Ereline J, Gapeyeva H, Joost K, Mõttus K, Taba P. 2004. Leg-Extension Strength and Chair-Rise Performance in Elderly Women with Parkinson’s Disease. J Aging Phys Act. 12(4):511–524. doi:10.1123/japa.12.4.511.
  • Papadopoulos C, Kalapotharakos VI, Chimonidis E, Gantiraga E, Grezios A, Gissis I. 2008. Effects of knee angle on lower extremity extension force and activation time characteristics of selected thigh muscles. Isokinet Exerc Sci. 16(1):41–46.
  • Pheasant ST, Grieve DW, Rubin T, Thompson SJ. 1982. Vector representations of human strength in whole body exertion. Appl Ergon. 13(2):139–144. doi:10.1016/0003-6870(82)90235-6.
  • Rees JE, Graham NE. 1952. The effect of backrest position on the push which can be exerted on an isometric foot-pedal. J Anat. 86(Pt 3):310–319.
  • Shadmehr R, Wise SP. 2005. The computational neurobiology of reaching and pointing: a foundation for motor learning. Cambridge, MA: MIT Press.
  • Suzuki Y, Kobayashi Y, Takizawa M. 2018. Effects of joint moments on horizontal and vertical velocities of body mass center during jumping in different directions. Int J Sport Health Sci. 201628. doi:10.5432/ijshs.201628.
  • Valero-Cuevas FJ. 2016. Limb Mechanics. In: Guglielmelli, E ed. Fundamentals of neuromechanics. Biosystems & Biorobotics, vol 8. London: Springer; p. 25–36. doi:10.1007/978-1-4471-6747-1_3.
  • van Antwerp KW, Burkholder TJ, Ting LH. 2007. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb. J Biomech. 40(16):3570–3579. doi:10.1016/j.jbiomech.2007.06.001.
  • Yoshikawa T. 1990. Foundations of robotics: analysis and control. Cambridge, MA: MIT Press.
  • Zajac FE, Wicke RW, Levine WS. 1984. Dependence of jumping performance on muscle properties when humans use only calf muscles for propulsion. J Biomech. 17(7):513–523. doi:10.1016/0021-9290(84)90019-8.