1,256
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A computational study of mechanical properties of collagen-based bio-composites

&
Pages 76-87 | Received 17 May 2019, Accepted 13 Aug 2020, Published online: 02 Sep 2020

References

  • Ahsan AS. 2017. Effect of intrafibrillar mineralization on the mechanical properties of osteogenesis imperfecta bone using a cohesive finite element approach [dissertation]. San Antonio (TX): The University of Texas at San Antonio.
  • Amirian M, Chakoli AN, Sui JH, Cai W. 2012. Enhanced mechanical and photoluminescence effect of poly (L-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym Bull. 68:1747–1763.
  • Balandin AA. 2011. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 10:569–581.
  • Boldor D, Gerbo NM, Monroe WT, Palmer JH, Li Z, Biris AS. 2008. Temperature measurement of carbon nanotubes using infrared thermography. Chem Mater. 20:4011–4016.
  • Charlier J, Lambin P, Ebbesen TW. 1996. Electronic properties of carbon nanotubes with polygonized cross sections. Phys Rev B Condens Matter. 54:R8377–R8380.
  • Currey JD. 2002. Bones: structure and mechanics. Princeton, NJ: Princeton university press.
  • Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. 2016. Large deformation mechanisms, plasticity, and failure of an individual collagen fibril with different mineral content. J Bone Miner Res. 31:380–390.
  • Dubey DK, Tomar V. 2009. The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen–hydroxyapatite biomaterials as a function of the chemical environment. J Phys Condens Matter. 21:205103.
  • Dubey DK, Tomar V. 2013. Ab initio investigation of strain dependent atomistic interactions at two tropocollagen-hydroxyapatite interfaces. J Eng Mater Technol. 135:021015.
  • Eppell S, Smith B, Kahn H, Ballarini R. 2006. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface. 3:117–121.
  • Fielder M, Nair AK. 2018. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomech Model Mechanobiol. 18(1):57–68.
  • Fratzl P, 2008. Collagen: structure and mechanics, an introduction. Collagen: structure and mechanics, 1–13.
  • Gautieri A, Vesentini S, Redaelli A, Buehler MJ. 2011. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11:757–766.
  • Grant CA, Brockwell DJ, Radford SE, Thomson NH. 2008. Effects of hydration on the mechanical response of individual collagen fibrils. Appl Phys Lett. 92:233902.
  • Gul-E-Noor F, Singh C, Papaioannou A, Sinha N, Boutis GS. 2015. Behavior of water in collagen and hydroxyapatite sites of cortical bone: fracture, mechanical wear, and load bearing studies. J Phys Chem C. 119:21528–21537.
  • Hamed E, Jasiuk I. 2013. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J Mech Behav Biomed. 28:94–110.
  • Hamed E, Lee Y, Jasiuk I. 2010. Multiscale modeling of elastic properties of cortical bone. Acta Mech. 213:131–154.
  • Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A. 2011. Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon. 49:3284–3291.
  • Holmes R, Kirk S, Tronci G, Yang X, Wood D. 2017. Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type I collagen. Mater Sci Eng C. 77:823–827.
  • Huiskes R. 1980. Some fundamental aspects of human joint replacement: analyses of stresses and heat conduction in bone-prosthesis structures. Acta Orthop Scand. 51:3–208.
  • Ji B, Gao H, Jimmy Hsia K. 2004. How do slender mineral crystals resist buckling in biological materials? Philos Mag Lett. 84:631–641.
  • Jing Z, Wu Y, Su W, Tian M, Jiang W, Cao L, Zhao L, Zhao Z. 2017. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Ann Biomed Eng. 45:2075–2087.
  • Kang Y, Wang Q, Liu YC, Wu T, Chen Q, Guan WJ. 2008. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B. 112:4801–4807.
  • Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett J, Terrill NJ, Williams GR, Brown MA, Croucher PI. 2012. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in‐situ synchrotron X‐ray scattering and backscattered electron imaging. J Bone Miner Res. 27:876–890.
  • Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM. 2012. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol. 180:428–438.
  • Lefèvre E, Guivier-Curien C, Pithioux M, Charrier A. 2013. Determination of mechanical properties of cortical bone using AFM under dry and immersed conditions. Comput Methods Biomech Biomed Engin. 16:337–339.
  • Lin L, Samuel J, Zeng X, Wang X. 2017. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J Mech Behav Biomed. 65:224–235.
  • MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. 2005. Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A. 74:489–496.
  • Meng J, Kong H, Han Z, Wang C, Zhu G, Xie S, Xu H. 2009. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J Biomed Mater Res A. 88:105–116.
  • Minary-Jolandan M, Yu M-F. 2009. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules. 10:2565–2570.
  • Mueller KH, Trias A, Ray RD. 1966. Bone Density and Composition: age-related and pathological changes in water and mineral content. JBJS. 48:140–148.
  • Nair AK, Gautieri A, Buehler MJ. 2014. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules. 15:2494–2500.
  • Nair AK, Gautieri A, Chang S-W, Buehler MJ. 2013. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 4:1724.
  • Nelson JS, Yow L, Liaw LH, Macleay L, Zavar RB, Orenstein A, Wright WH, Andrews JJ, Berns MW. 1988. Ablation of bone and methacrylate by a prototype mid‐infrared erbium: YAG laser. Lasers Surg Med. 8:494–500.
  • Nikolov S, Raabe D. 2008. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J. 94:4220–4232.
  • Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk NAJM. 2010. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 9:1004–1009.
  • Nyman JS, Roy A, Shen XM, Acuna RL, Tyler JH, Wang XD. 2006. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 39:931–938.
  • Orgel JPRO, Irving TC, Miller A, Wess TJ. 2006. Microfibrillar structure of type I collagen in situ. P Natl Acad Sci USA. 103:9001–9005.
  • Padawer G, Beecher N. 1970. On the strength and stiffness of planar reinforced plastic resins. Polym Eng Sci. 10:185–192.
  • Plimpton S. 1995. Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys. 117:1–19.
  • Pradhan N, Duan H, Liang J, Iannacchione G. 2009. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology. 20:245705.
  • Pradhan SM, Katti DR, Katti KS. 2011. Steered molecular dynamics study of mechanical response of full length and short collagen molecules. J Nanomech Micromech. 1:104–110.
  • Qu T, Tomar V. 2015. Understanding straining induced changes in thermal properties of tropocollagen-hydroxyapatite interfacial configurations. Int J Exp Comput Biomech. 3:62–81.
  • Rauch F, Glorieux FH. 2004. Osteogenesis imperfecta. Lancet. 363:1377–1385.
  • Samuel J, Park J-S, Almer J, Wang X. 2016. Effect of water on nanomechanics of bone is different between tension and compression. J Mech Behav Biomed. 57:128–138.
  • Sasaki N, Odajima S. 1996. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech. 29:1131–1136.
  • Saxon SV, Etten MJ, Perkins EA. 2014. Physical change and aging: A guide for the helping professions. New York: Springer Publishing Company.
  • Silva E, de Vasconcellos LMR, Rodrigues BV, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO. 2017. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng C. 73:31–39.
  • Streeter I, de Leeuw NH. 2010. Atomistic modeling of collagen proteins in their fibrillar environment. J Phys Chem B. 114:13263–13270.
  • Tan W, Twomey J, Guo D, Madhavan K, Li M. 2010. Evaluation of nanostructural, mechanical, and biological properties of collagen–nanotube composites. IEEE Trans Nanobioscience. 9:111–120.
  • Tanaka M, Sato Y, Zhang M, Haniu H, Okamoto M, Aoki K, Takizawa T, Yoshida K, Sobajima A, Kamanaka T. 2017. In Vitro and In Vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration. Nanomaterials. 7:46.
  • Tang Y, Ballarini R, Buehler MJ, Eppell SJ. 2010. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface. 7:839–850.
  • Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM. 2006. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech. 39:1842–1851.
  • Timmins PA, Wall JC. 1977. Bone Water. Calc Tiss Res. 23:1–5.
  • van der Rijt JA, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. 2006. Micromechanical testing of individual collagen fibrils. Macromol Biosci. 6:697–702.
  • Wang Y, Azais T, Robin M, Vallee A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille MM, Nassif N. 2012. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater. 11:724–733.
  • Wess TJ, Hammersley A, Wess L, Miller A. 1995. Type-I collagen packing, conformation of the triclinic unit-cell. J Mol Biol. 248:487–493.
  • Wiggins K, Malkin S. 1976. Drilling of bone. J Biomech. 9:553–559.
  • Zanello LP, Zhao B, Hu H, Haddon RC. 2006. Bone cell proliferation on carbon nanotubes. Nano Lett. 6:562–567.
  • Zhang DJ, Chippada U, Jordan K. 2007. Effect of the structural water on the mechanical properties of collagen-like microfibrils: A molecular dynamics study. Ann Biomed Eng. 35:1216–1230.
  • Zhang P, Huang Y, Geubelle P, Klein P, Hwang K. 2002. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct. 39:3893–3906.