6,411
Views
38
CrossRef citations to date
0
Altmetric
Review Article

An overview of development and status of fiber-reinforced composites as dental and medical biomaterials

Pages 44-55 | Received 22 Feb 2018, Accepted 20 Mar 2018, Published online: 12 Apr 2018

References

  • Smith DC. Recent developments and prospects in dental polymers. J Prosthet Dent. 1962;12:1066–1078.
  • Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study. Quintess Int. 1997;28:39–44.
  • Narva K. Fibre-reinforced denture base polymers. Clinical performance and mechanical properties. Thesis. Annales Universitatis Turkuensis. University of Turku, 2004.
  • Narva KK, Lassila LVJ, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymers. Dent Mater. 2005;21:421–428.
  • Narva KK, Lassila LVJ, Vallittu PK. Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement. Composites, Part A. 2005;36:1275–1281.
  • Waltimo T, Luo G, Samaranayake LP, et al. Glass fibre-reinforced composite laced with chlorhexidine digluconate and yeast adhesion. J Mater Sci Mater Med. 2004;15:117–121.
  • Ladizesky NH. The Integration of dental resins with highly drawn polyethylene fibres. Clin Mater. 1990;6:181–192.
  • Ladizesky NH, Chow TW, Ward IM. The effect of highly drawn polyethylene fibres on the mechanical properties of denture base resins. Clin Mater. 1990;6:209–225.
  • Ladizesky NH, Ho CF, Chow TW. Reinforcement of complete denture bases with continuous high performance polyethylene fibers. J Prosthet Dent. 1992;68:934–939.
  • Cheng YY, Chow TW. Fabrication of complete denture bases reinforced with polyethylene woven fabric. J Prosthodontics. 1999;8:268–272.
  • Ladizesky NH, Chow TW, Cheng YY. Denture base reinforcement using woven polyethylene fiber. Int J Prosthod. 1994;7:307–314.
  • Körber HK, Körber S. Experimentelle Untersuchungen zur Passgenauigkeit von GFK-Bruckengerusten ‘Vectris’. Quintess Zahntech. 1998;24:43–53.
  • Kolbeck C, Rosentritt M, Behr M, et al. In vitro examination of the fracture strength of 3 different fiber composite and 1 all-ceramic posterior inlay fixed partial denture systems. J Prosthodont. 2002;11:248–253.
  • Loose M, Rosentritt M, Leibrock A, et al. In vitro study of fracture strength and marginal adaptation of fiber-reinforced-composite versus all ceramic fixed partial dentures. Eur J Prosthod Rest Dent. 1998;6:55–62.
  • Göhring TN, Schmidlin PR, Lutzt F. Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures. Am J Dent. 2002;15:35–40.
  • Behr M, Rosentritt M, Lang R, et al. Flexural properties of fiber reinforced composite using a vacuum/pressure or a manual adaptation manufacturing process. J Dent. 2000;28:509–514.
  • Freilich MA, Karmarker AC, Burstone CJ, et al. Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent. 1998;80:311–318.
  • Freilich MA, Duncan JP, Alarcon EK, et al. The design and fabrication of fiber-reinforced implant prostheses. J Prosthet Dent. 2002;88:449–454.
  • Freilich MA, Meiers JC, Duncan JP, et al. Clinical evaluation of fiber-reinforced fixed bridges. J Am Dent Assoc. 2002;133:1524–1534.
  • Freilich MA, Duncan JP, Meiers JC, et al. Preimpregnated, fiber-reinforced prostheses. Part I. Basic rationale and complete coverage and intracoronal fixed partial denture design. Quintess Int. 1998;29:689–696.
  • Ahlstrand WM, Finger WJ. Direct and indirect fiber-reinforced fixed partial dentures: case reports. Quintess Int. 2002;33:359–365.
  • Behr M, Hindelang U, Rosentritt M, et al. Comparison of failure rates of adhesive-fixed partial dentures for in vivo and in vitro studies. Clin Oral Invest. 2000;4:25–30.
  • Behr M, Rosentritt M, Handel G. Fiber-reinforced composite crowns and FPDs: a clinical report. Int J Prosthod. 2003;15:239–243.
  • Göhring TN, Mormann WH, Lutz F. Clinical and scanning electron microscopic evaluation of fiber-reinforced inlay fixed partial dentures: preliminary results after one year. J Prosthet Dent. 1999;82:662–668.
  • Göhring TN, Schmidlin PR, Lutz F. Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures. American J Dent. 2002;15:35–40.
  • Meiers JC, Duncan JP, Freilich MA, et al. Preimpregnated, fiber-reinforced prostheses: Part II. Direct applications: splints and fixed partial dentures. Quintess Int. 1998;29:761–768.
  • Malmstrom H, Dellanzo-Savu A, Xiao J, et al. Success, clinical performance and patuient satisfaction of direct fibre-reinforced composite fixed partial dentures: a two-year clinical study. J Oral Rehabil. 2015;42:906–913.
  • Meiers JC, Freilich MA. Conservative anterior tooth replacement using fiber-reinforced composite. Oper Dent. 2000;25:239–243.
  • Meiers JC, Freilich MA. Chairside prefabricated fiber-reinforced composite fixed partial dentures. Quintess Int. 2001;32:99–104.
  • Rosentritt M, Behr M, Lang R, et al. Experimental design of FPD made of all-ceramics and fibre-reinforced composite. Dent Mater. 2000;16:159–165.
  • Vallittu PK. The effect of glass fiber reinforcement on the fracture resistance of a provisional fixed partial denture. J Prosthet Dent. 1998;79:125–130.
  • Vallittu PK. Prosthodontic treatment with glass fiber reinforced composite resin bonded fixed partial denture. A clinical report. J Prosthet Dent. 1999;82:132–135.
  • Dyer SC, Lassila LVJLVJ, Vallittu PK. The effect of internal fiber arrangement on the delamination failure in hybrid composite dental prostheses. J Phys Mesomech. 2004;7:119–122.
  • Dyer SR, Lassila LVJ, Jokinen M, et al. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent Mater. 2004;20:947–955.
  • Shinya A, Yokoyama D, Lassila LV, et al. Three-dimensional finite element analysis of metal and FRC adhesive fixed dental prosthesis. J Adhes Dent 2008;10:365–371.
  • Dyer SR, Lassila LVJ, Alander P, et al. Static strength of molar region direct technique glass-fibre-reinforced composite fixed partial denture. J Oral Rehabil. 2005;32:351–357.
  • Özcan M, Breuklander MH, Vallittu PK. Effect of slot preparation on the strength oif glass fiber-reinforced composite inlay retained fixed partial dentures. J Prosthet Dent. 2005;93:337–345.
  • Vallittu PK, Shinya A, Baraba A, et al. Fiber-reinforced composites in fixed prosthodontics: Quo vadis? Dent Mater. 2017;33:877–879.
  • Wolff D, Wohlrab T, Saure D, et al. Fiber-reinforced composite fixed dental prostheses: a 4-year prospective clinical trial evaluating survival, quality, and effects on surrounding periodontal tissues. J Prosthet Dent. 2018;119:47–52.
  • Kumbuloglu O, Özcan M. Clinical survival of indirect, anterior 3-unit surface-retained fibre-reinforced composite fixed dental prosthesis: up to 7.5-years follow-up. J Dent. 2015;43:656–663.
  • Butterworth C, Ellakwa AE, Shortall A. A fiber-reinforced composites in restorative dentistry. Dent. Update. 2003;30:300–306.
  • Van Dijken JWV, Sunnegård-Grönberg KS. Fiber-reinforced packable resin composites in Class II cavities. J Dent. 2006;34:763–769.
  • Garoushi S, Lassila LVJ, Tezvergil A, et al. Load bearing capacity of fibre-reinforced and particlulate filler composite resin combination. J Dent. 2006;34:179–184.
  • Garoushi S, Lassila LVJ, Tezvergil A, et al. Fiber-reinforced composite substructure: load bearing capacity of an onlay restoration and flexural properties of the material. J Contemp Dent Pract. 2006;7:1–8.
  • Garoushi SK, Lassila LVJ, Vallittu PK. Short fiber reinforced composite: the effect of fiber length and volume fraction. J Contemp Dent Pract. 2006;7:10–17.
  • Garoushi S, Vallittu PK, Lassila LVJ. Fracture resistance of short random oriented glass fiber reinforced composite premolar crown. Acta Biomater.2007;3:779–784.
  • Garoushi S, Lassila LVJ, Vallittu PK. Direct composite resin restoration of damaged incisors using short fiber-reinforced composite resin. J Dent. 2007;35:731–736.
  • Garoushi SK, Ballo AM, Lassila LVJ, et al. Fracture resistance of fragmented incisal edges restored with fiber-reinforced composite. J Adhes Dent. 2006;8:91–95.
  • Garoushi S, Lassila LVJ, Tezvergil A, et al. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent Mater. 2007;23:17–23.
  • Garoushi SK, Vallittu PK, Watts DC, et al. Polymerization shrinkage of experimental short glass fiber reinforced composite with semi-interpenetrating polymer network matrix. Dent Mater. 2008;24:211–215.
  • Garoushi S, Vallittu PK, Lassila LVJ. Fracture toughness, compressive strength and load-bearing capacity of short glass fiber-reinforced composite resin. Chin J Dent Res. 2011;14:1–5.
  • Garoushi S, Vallittu PK, Watts DC, et al. Effect of nanofiller fractions and temperature on polymerization shrinkage of glass fiber reinforced filling material. Dent Mater. 2008;24:606–610.
  • Garoushi SK, Lassila LV, Vallittu PK. Direct composite resin restoration of an anterior tooth: Effect of fiber-reinforced composite substructure. Eur J Prosthod Rest Dent. 2007;15:61–66.
  • Garoushi S, Vallittu PK, Lassila LVJ. Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol Scand. 2008;66:38–42.
  • Sewón LA, Ampula L, Vallittu PK. Rehabilitation of a periodontal patient with rapidly progressing marginal alveolar bone loss. A case report. J Clin Periodontol. 2000; 27:615–619.
  • Agrawal AA, Chitko SS. The use of silane-coated industrial glass fibers in splinting periodontally mobile teeth. Indian J Dent Res. 2011;22:594–596.
  • Özcan M. Kumbuloglu O. Periodontal and trauma splints using fiber reinforced resin composites. Chapter 8. In: Vallittu PK, Özcan M, editors. Clinical guide to principles of fiber-reinforced composites in dentistry. Cambridge (UK): Woodhead Publishing; 2017. p.111–124.
  • Mannocci F, Sheriff M, Watson TF, et al. Penetration of bonding resins into fiber posts: a confocal microscopic study. Int Endod J. 2005;38:46–51.
  • Mannocci F, Ferrari M, Watson TF. Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber, and zirconium dioxide ceramic root canal posts. J Adhes Dent. 1999;1:153–158.
  • Qualthrough AJ, Chandler NP, Purton DG. A comparison of the retention of tooth coloured posts. Quintess Int. 2003;34:199–201.
  • Lassila LV, Tanner J, Le bell AM, et al. Flexural properties of fiber reinforced root canal posts . Dent Mater. 2004;20:29–36.
  • LeBell A-M, Tanner J, Lassila LVJ, et al. Bonding of composite resin luting cement to fibre-reinforced composite root canal post. J Adhes Dent. 2004;6:319–325.
  • LeBell A-M, Lassila LVJ, Kangasniemi I, et al. Bonding of fibre-reinforced composite post to root canal dentin. J Dent. 2005;33:533–539.
  • Le Bell-Rönnlöf AM, Lassila LV, Kangasniemi I, et al. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts. Dent Mater. 2011;27:107–115.
  • Tanner J, Le Bell-Rönnlöf A-M, Vallittu P. Root canal anchoring systems. Chapter 7. In: Vallittu PK, Özcan M editors. Clinical guide to principles of fiber-reinforced composites in dentistry. Cambridge (UK): Woodhead Publishing; 2017. p. 97–109.
  • Ferrari M, Sorrentino R, Juloski J, et al. Post-retained single crowns versus fixed dental prostheses: a 7-year prospective clinical study. J Dent Res. 2017;96:1490–1497.
  • Sorrentino R, DiMauro MI, Ferrari M, et al. Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses-a systematic review. Clin Oral Investig. 2016;20:1449–1457.
  • Vallittu PK. Are we misusing fiber posts. Guest editorial. Dent Mater. 2016;32:125–126.
  • Rantala LI, Lastumaki TM, Peltomaki T, et al. Fatigue resistance of removable orthodontic appliance reinforced with glass fibre weave. J Oral Rehabil. 2003;30:501–506.
  • Scribante A, Sfondrini MF. Orthodontic retainers. In: Vallittu PK, Özcan M, editors. Clinical guide to principles of fiber-reinforced composites in dentistry. Cambridge (UK): Woodhead Publishing 2017. p.187–202.
  • Özcan M, van der Sleen JM, Kurunmäki H, et al. Comparison of repair methods for ceramic-fused-to-metal crowns. J Prosthodontics. 2006;15:283–288.
  • Vallittu PK. High aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater. 2014;31:1–7.
  • Vallittu PK. Use of woven glass fibres to reinforce a composite veneer. A fracture resistance and acoustic emission study. J Oral Rehabil. 2002;29:423–429.
  • Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthod. 1998;11:340–350.
  • Vallittu PK. Effect of 180 weeks water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont. 2000;13:334–339.
  • Tezvergil A, Lassila LVJ, Vallittu PK. The effect of fiber orientation on the thermal expansion coefficients of the fiber reinforced composites. Dent Mater. 2003;19:471–477.
  • Tezvergil A, Lassila LVJ, Vallittu PK. The effect of fiber orientation on the polymerization shrinkage strain of fiber reinforced composite. Dent Mater. 2006;22:610–616.
  • Vallittu PK. The effect of void space and polymerisation time on transverse strength of acrylic-glass fiber composite. J Oral Rehabil. 1995;22:257–261.
  • Vallittu PK. Impregnation of glass fibers with polymethylmethacrylate using powder-coating method. Appl Compos Mater. 1995;2:51–58.
  • Vallittu PK. Some aspects of the tensile strength of unidirectional glass fiber: polymethyl methacrylate composite used in dentures. J Oral Rehabil. 1998;25:100–105.
  • Tezvergil A, Lassila LVJ, Vallittu PK. Strength of adhesive-bonded fiber-reinforced composites to enamel and dentine substrates. J Adhes Dent. 2003;5:301–311.
  • Tezvergil A, Lassila LVJ, Vallittu PK. The shear bond strength of bidirectional and random-oriented fibre-reinforced composite to tooth structure. J Dent. 2005;33:509–516.
  • Vallittu PK, Lassila VP, Lappalainen R. Evaluation of damage to removable dentures in two cities in Finland. Acta Odontol Scand. 1993;51:363–369.
  • Vallittu PK, Alakuijala P, Lassila VP, et al. In vitro fatigue fracture of an acrylic resin-based partial denture: an exploratory study. J Prosthet Dent. 1994;72:289–295.
  • Vallittu PK, Lassila VP, Lappalainen R. The effect of notch shape and self-cured acrylic repairing on the fatigue resistance of an acrylic resin denture base. J Oral Rehabil. 1996;23:108–113.
  • Vallittu PK. Fracture surface characteristics of a damaged acrylic resin based denture as analysed by SEM-technique. J Oral Rehabil. 1996;23:524–529.
  • Rosen MR. From treating solution to filler surface and beyond. The life histrory of a silane coupling agent. J Coat Technol. 1978;50:70–82.
  • Matinlinna JP, Dahl JE, Karlsson S, et al. The effect of the novel silane system to the flexural properties of E-glass fiber reinforced composites. Silanes Other Coupling Agents. 2009;5:107–121.
  • Matinlinna JP, Lassila LVJ, Vallittu PK. Experimental novel silane system in adhesion promotion between dental resin and pretreated titanium. Silicon. 2009;1:249–254.
  • Narva K, Vallittu PK, Yli-Urpo A. Clinical survey of acrylic resin removable denture repairs with glass-fiber reinforcement. Int J Prosthodont. 2001;14:219–224.
  • Vallittu PK, Sevelius C. Resin-bonded, glass fiber reinforced composite fixed partial dentures: a clinical study. J Prosthet Dent. 2000;84:413–418.
  • Xie Q, Lassila LV, Vallittu PK. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs. J Dent. 2007;35:578–582.
  • Nohrström TJ, Vallittu PK, Yli-Urpo A. The effect of position and quantity of glass fibers on the fracture resistance of provisional fixed partial denture. Int J Prosthodont. 2000;13:72–78.
  • Sperling LH. Over view of IPNs. Interpenetrating polymer networks. In: Klempner D, Sperling LH, Utracti LA, editors. Advances in chemistry series; 239. Washington, DC: American Chemical Society; 1994. p. 4–6.
  • Kallio TT, Lastumäki TM, Vallittu PK. Bonding of restorative and veneering composite resin to some polymeric composites. Dent Mater. 2001;17:80–86.
  • Lastumäki T, Lassila LVJ, Vallittu PK. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties. J Mater Sci Mater Med. 2003;14:803–809.
  • Vallittu PK. Interpenetrating polymer networks (IPNs) in dental polymers and composites. J Adhes Sci Technol. 2009;23:961–972.
  • van Heumen CCM, vanDijken JWV, Tanner J, et al. Five-year survival of 3-unit fiber-reinforced composite fixed partial dentures in the anterior area. Dent Mater. 2009;25:820–827.
  • Tanner J, van Heumen CCM, van Dijeken JWV, et al. Five-year survival of 3-unit fiber-reinforced composite fixed partial dentures in posterior area. Dent Mater. 2010;26:954–960.
  • Perea L, Matinlinna JP, Tolvanen M, et al. Fiber-reinforced composite fixed dental prostheses with various pontics. J Adhes Dent. 2014;16:161–168.
  • Perea L, Matinlinna JP, Tolvanen M, et al. Monomer priming of denture teeth and its effects on the bond strength of composite resin. J Prosthet Dent. 2014;112:257–266.
  • Perea L, Matinlinna JP, Tolvanen M, et al. Penetration depth of monomer systems into acrylic resin denture teeth used as pontics. J Prosthet Dent. 2015;113:480–487.
  • Perea L, Matinlinna JP, Tolvanen M, et al. Fracture behavior of pontic of fiber-reinforced composite fixed dental prostheses. Dent Mater J. 2015;34:746–753.
  • Özcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater. 2003;19:725–731.
  • Wolff D, Geiger S, Ding P, et al. Analysisi of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites. Dent Mater. 2012;28:541–547.
  • Frese C, Decker C, Rebholz J, et al. Original and repair bond strength of fiber-reinforced compsites in vitro. Dent Mater. 2014;30:456–462.
  • Kantola R, Lassila L, Vallittu P. Adhesion of maxillofacial silicone elastomer to a fiber-reinforced composite resin framework. Int J Prosthodont. 2011;24:582–588.
  • Kurunmäki H, Kantola R, Hatamleh MM, et al. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report. J Prosthet Dent. 2008;100:348–356.
  • Hatamleh MM, Watts DC. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses. J Prosthodont. 2011;20:113–119.
  • Hatamleh MM, Watts DC. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses. J Prosthodont. 2010;19:357–363.
  • Kosor BY, Artunç C, Şahan H. Adhesive retention of experimental fiber-reinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses. J Prosthet Dent. 2015;114:142–148.
  • Kantola R, Sivén M, Kurunmäki H, et al. Laser doppler imaging of skin microcirculation under fiber-reinforced composite framework of facial prosthesis. Acta Odontol Scand. 2013;72:106–112.
  • Brydone AS, Meek D, Maclaine AS. Bone grafting, orthopsedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010;225:1329–1343.
  • Vallittu PK. Bioactive glass: containing cranial implants: an overview. J Mater Sci. 2017;52:8772–8784.
  • Aitasalo KMJ, Piitulainen JM, Rekola J, et al. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck. 2013;36:722–728.
  • Byun SH, Lim HK, Kim SM, et al. The bioresorption and guided bone regeneration of absorbable hydroxyapatite-coated magnesium mesh. J Craniofac Surg. 2017;28:518–523.
  • Kim BJ, Piao Y, Wufuer M, et al. Biocompatibility and efficiency of biodegradable magnesium-based plates and screws in the facial fracture model of beagles. J Oral Maxillofac Surg. 2018 [cited 2018 Feb 2]. DOI:10.1016/j.joms.2018.01.015.
  • Piitulainen JM, Mattila R, Moritz N, et al. Load-bearing capacity and fracture behaviour of glass fiber-reinforced composite cranioplasty implants. JABFM. 2017;10:e356–e361.
  • Posti JP, Piitulainen JM, Hupa L, et al. A glass fiber-reinforced composite: bioactive glass cranioplasty implant: a case study of an early development stage implant removed due to a late infection. J Mech Behav Biomed Mater. 2015;55:191–200.
  • Ballo AM, Cekic-Nagas I, Ergun G, et al. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations. Dent Mater. 2014;30:e384–e395.
  • Ballo AM, Akca EA, Ozen T, et al. Bone tissue responses to glass fiber-reinforced composite implants - a histomorphometric study. Clin Oral Implants Res. 2009;20:608–615.
  • Tuusa S, Peltola M, Tirri T, et al. Comparison of two glass fiber-reinforced composite structures as implant material in calvarial bone defect. Bioceramics Key Eng Mater. 2007;361-363:471–474.
  • Tuusa SM-R, Peltola MJ, Tirri T, et al. Reconstruction of critical size calvarial bone defect in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res. 2008;84:510–519.
  • Ballo AM, Kokkari AK, Meretoja VV, et al. Osteoblast proliferation and maturation on bioactive fiber-reinforced composite. J Mater Sci Mater Med. 2008;19:3169–3177.
  • Hench LL, West JK. Biological applications of bioactive glasses. Life Chemistry Reports. 1996;13:187–241.
  • Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed. 2004;15:543–562.
  • Välimäki VV, Aro HT. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg. 2006;95:95–102.
  • Boccaccini AR, Minay EJ, Krause D. Bioglass coatings on superelastic NiTi wires by electrophoretic deposition (EPD). Electrophoretic Depos Fundam Appl II. Key Eng Mater 2006;314:219–224.
  • Ojansivu M, Vanhatupa S, Björkvik L, et al. Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater. 2015;21:190–203.
  • Vallittu PK, Närhi TO, Hupa L. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants. Dent Mater. 2015;31:371–381.
  • Monfoulet LE, Becquart P, Marcaht D, et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng Part A. 2014;20:1827–1840.
  • Zhang D, Leppäranta O, Munukka E, et al. Antimicrobial effects and dissolution behaviour of six bioactive glasses. J Biomed Mater Res A. 2010;93:475–483.
  • Leppäranta O, Vaahtio M, Peltola T, et al. Antimicrobial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci: Mater Med. 2008;19:547–551.
  • Munukka E, Leppäranta O, Korkeamäki M, et al. Bacterial effects of bioactive glass on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19:27–32.
  • Lindfors N, Geurts J, Drago L, et al. Antibacterial bioactive glass S53P4, for chronic bone infections: a multinational study. Adv Exp Med Biol. 2017;97:81–92.
  • Stoor P, Söderling E, Grenman R. Interactions between the bioactive glass S53P4 and the atrophic rhinitis-associated microorganism klebsiella ozaenae. J Biomed Mater Res. 1999;48:869–874.
  • Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56:161–165.
  • Piitulainen JM, Kauko T, Aitasalo KMJ, et al. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83:708–714.
  • Piitulainen J, Posti JP, Aitasalo K, et al. Pediatric cranial defect reconstruction using bioactive fiber reinforced composite implant: early outcomes. Acta Neurochir. 2015;157:681–617.
  • Thesleff T, Lehtimäki K, Niskakangas T, et al. Cranioplasty with adipose-derived stem cells, beta-tricalcium phosphate granules and supporting mesh: six-year clinical follow-up results. Stem Cells Translat Med. 2017;6:1576–1582.
  • Varila L, Lehtonen T, Tuominen J, et al. In vitro behaviour of three biocompatible glasses in composite implants. J Mater Sci Mater Med. 2012;23:2425–2435.
  • Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998;14:726–737.
  • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopaedic devices. Biomaterials. 2000;21:2335–2346.
  • Meyer F, Wardale J, Best S, et al. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J Orthop Res. 2012;30:864–871.
  • Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17:831–839.
  • Pihlajamäki H, Salminen S, Laitinen O, et al. Tissue response to polyglycolide, polydioxanone, polylevolactide, and metallic pins in cancellous bone: an experimental study on rabbits. J Orthop Res. 2006;24:1597–1606.
  • Böstman O, Pihlajamäki H. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res. 2000;(371:):216–227.
  • Barber FA, Dockery WD. Long-term absorption of poly-L-lactic Acid interference screws. Arthroscopy. 2006;22:820–826.