2,425
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Fracture resistance of simulated immature teeth treated with a regenerative endodontic protocol

, , & ORCID Icon
Pages 30-37 | Received 19 Oct 2018, Accepted 03 Jan 2019, Published online: 31 Jan 2019

References

  • Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Dent Traumatol. 1992;8:45–55.
  • Glendor U. Epidemiology of traumatic dental injuries-a 12 year review of the literature. Dent Traumatol. 2008;24:603–611.
  • Andreasen JO, Munksgaard EC, Bakland LK. Comparison of fracture resistance in root canals of immature sheep teeth after filling with calcium hydroxide or MTA. Dent Traumatol. 2006;22:154–156.
  • Sawyer AN, Nikonov SY, Pancio AK, et al. Effects of calcium silicate-based materials on the flexural properties of dentin. J Endod. 2012;38:680–683.
  • Bortoluzzi EA, Souza EM, Reis JM, et al. Fracture strength of bovine incisors after intra-radicular treatment with MTA in an experimental immature tooth model. Int Endod J. 2007;40:684–691.
  • Hemalatha H, Sandeep M, Kulkarni S, et al. Evaluation of fracture resistance in simulated immature teeth using Resilon and Ribbond as root reinforcements–an in vitro study. Dent Traumatol. 2009;25:433–438.
  • Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 2013;39:S30–S43.
  • Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–390.
  • Galler KM. Clinical procedures for revitalization: current knowledge and considerations. Int Endod J. 2016;49:926–936.
  • Galler KM, Krastl G, Simon S, et al. European Society of Endodontology position statement: Revitalization procedures. Int Endod J. 2016;49:717–723.
  • Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review–part II: leakage and biocompatibility investigations. J Endod. 2010;36:190–202.
  • Law AS. Considerations for regeneration procedures. J Endod. 2013;39:S44–S56.
  • Baron A, Lindsey K, Sidow SJ, et al. Effect of a Benzalkonium chloride surfactant-sodium hypochlorite combination on elimination of enterococcus faecalis. J Endod. 2016;42:145–149.
  • Brito-Junior M, Pereira RD, Verissimo C, et al. Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate. Int Endod J. 2014;47:958–966.
  • Sivieri-Araujo G, Tanomaru-Filho M, Guerreiro-Tanomaru JM, et al. Fracture resistance of simulated immature teeth after different intra-radicular treatments. Braz Dent J. 2015;26:211–215.
  • Carvalho CAT, Valera MC, Oliveira LD, et al. Structural resistance in immature teeth using root reinforcements in vitro. Dent Traumatol. 2005;21:155–159.
  • Cauwels RG, Lassila LV, Martens LC, et al. Fracture resistance of endodontically restored, weakened incisors. Dent Traumatol. 2014;30:348–355.
  • Clavijo VG, Reis JM, Kabbach W, et al. Fracture strength of flared bovine roots restored with different intraradicular posts. J Appl Oral Sci. 2009;17:574–578.
  • Valera MC, Albuquerque MT, Yamasaki MC, et al. Fracture resistance of weakened bovine teeth after long-term use of calcium hydroxide. Dent Traumatol. 2015;31:385–389.
  • Hatibovic-Kofman S, Raimundo L, Zheng L, et al. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate. Dent Traumatol. 2008;24:272–276.
  • Sano H, Ciucchi B, Matthews WG, et al. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res. 1994;73:1205–1211.
  • Soares CJ, Barbosa LM, Santana FR, et al. Fracture strength of composite fixed partial denture using bovine teeth as a substitute for human teeth with or without fiber-reinforcement. Braz Dent J. 2010;21:235–240.
  • Fonseca RB, Haiter-Neto F, Carlo HL, et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol. 2008;53:1023–1029.
  • Andreasen JO, Paulsen HU, Yu Z, et al. A long-term study of 370 autotransplanted premolars. Part IV. Root development subsequent to transplantation. Eur J Orthod. 1990;12:38–50.
  • Moorrees CF, Fanning EA, Hunt EE. Jr. Age variation of formation stages for ten permanent teeth. J Dent Res. 1963;42:1490–1502.
  • Moorrees CF, Gron AM, Lebret LM, et al. Growth studies of the dentition: a review. Am J Orthod. 1969;55:600–616.
  • Stuart CH, Schwartz SA, Beeson TJ. Reinforcement of immature roots with a new resin filling material. J Endod. 2006;32:350–353.
  • Diogenes A, Ruparel NB. Regenerative endodontic procedures: Clinical outcomes. Dent Clin North Am. 2017;61:111–125.
  • Soares CJ, Pizi ECG, Fonseca RB, et al. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res. 2005;19:11–16.
  • Yoshida N, Koga Y, Peng CL, et al. In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys. 2001;23:567–572.
  • Jamani KD, Harrington E, Wilson HJ. Rigidity of elastomeric impression materials. J Oral Rehabil. 1989;16:241–248.
  • Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J Oral Rehabil. 2001;28:425–432.
  • Saupe WA, Gluskin AH, Radke RA. Jr. A comparative study of fracture resistance between morphologic dowel and cores and a resin-reinforced dowel system in the intraradicular restoration of structurally compromised roots. Quintessence Int. 1996;27:483–491.
  • Zogheib LV, Pereira JR, do Valle AL, et al. Fracture resistance of weakened roots restored with composite resin and glass fiber post. Braz Dent J. 2008;19:329–333.
  • Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18:134–137.
  • Karapinar-Kazandag M, Basrani B, Tom-Kun Yamagishi V, et al. Fracture resistance of simulated immature tooth roots reinforced with MTA or restorative materials. Dent Traumatol. 2016;32:146–152.
  • Schmoldt SJ, Kirkpatrick TC, Rutledge RE, et al. Reinforcement of simulated immature roots restored with composite resin, mineral trioxide aggregate, gutta-percha, or a fiber post after thermocycling. J Endod. 2011;37:1390–1393.
  • White JD, Lacefield WR, Chavers LS, et al. The effect of three commonly used endodontic materials on the strength and hardness of root dentin. J Endod. 2002;28:828–830.
  • Cauwels RG, Pieters IY, Martens LC, et al. Fracture resistance and reinforcement of immature roots with gutta percha, mineral trioxide aggregate and calcium phosphate bone cement: a standardized in vitro model. Dent Traumatol. 2010;26:137–142.
  • Tuna EB, Dincol ME, Gencay K, et al. Fracture resistance of immature teeth filled with BioAggregate, mineral trioxide aggregate and calcium hydroxide. Dent Traumatol. 2011;27:174–178.
  • Felman D, Parashos P. Coronal tooth discoloration and white mineral trioxide aggregate. J Endod. 2013;39:484–487.
  • Katebzadeh N, Dalton BC, Trope M. Strengthening immature teeth during and after apexification. J Endod. 1998;24:256–259.
  • Lawley GR, Schindler WG, Walker WA, 3rd, et al. Evaluation of ultrasonically placed MTA and fracture resistance with intracanal composite resin in a model of apexification. J Endod. 2004;30:167–172.