2,727
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Groundwater quality and health assessments based on heavy metals and trace elements content in Dakhla Oasis, New Valley Governorate, Egypt

ORCID Icon, , &
Pages 1-12 | Received 14 Jul 2021, Accepted 17 Nov 2021, Published online: 07 Jan 2022

References

  • Abouzeid, A.-Z. M., & Khalid, -A.-A. M. (2011). Mineral industry in Egypt-part I: Metallic mineral commodities. Natural Resource, 2, 35. doi:10.4236/nr.2011.21006
  • Adesiyan, I. M., Bisi-Johnson, M., Aladesanmi, O. T., Okoh, A. I., & Ogunfowokan, A. O. (2018). Concentrations and human health risk of heavy metals in rivers in Southwest Nigeria. Journal of Health and Pollution, 8, 180907. doi:10.5696/2156-9614-8.19.180907
  • Aglan, R. F., Hamed, M. M., & Saleh, H. M. (2019). Selective and sensitive determination of Cd (II) ions in various samples using a novel modified carbon paste electrode. Journal of Analytical Science and Technology, 10, 7. doi:10.1186/s40543-019-0166-4
  • Aglan, R. F., Mahmoud, H. H., Rashad, A. M., & Saleh, H. M. (2021). Novel coated wire potentiometric sensor for selective determination of Mn (II) ions in various authentic samples. Journal of the Iranian Chemical Society, 18, 1567–1579. doi:10.1007/s13738-020-02135-2
  • Banejad, H., & Olyaie, E. (2011). Application of an artificial neural network model to rivers water quality indexes prediction—A case study. Journal American Science, 7, 60–65.
  • CCME, 2001. CCME WATER QUALITY INDEX 1.0 Technical Report 13.
  • Dietrich, A. M., & Gallagher, C. D. (2013). Consumer ability to detect the taste of total dissolved solids. Journal-American Water Work Association, 105, E255–E263. doi:10.5942/jawwa.2013.105.0049
  • Duffus, J. H. (2002). “Heavy metals” a meaningless term?(IUPAC Technical Report). Pure and Applied Chemistry, 74, 793–807. doi:10.1351/pac200274050793
  • Hall, G. E. M. (1998). Relative contamination levels observed in different types of bottles used to collect water samples. Explore, 101, 3–7.
  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey.
  • Houria, B., Mahdi, K., & Zohra, T. F. (2020). hydrochemical characterisation of groundwater quality: Merdja plain (Tebessa Town, Algeria). Civil Engineering Journal, 6, 318–325. doi:10.28991/cej-2020-03091473
  • Hussain, M. R., & Abed, B. S. (2019). Simulation and assessment of groundwater for domestic and irrigation uses. Civil Engineering Journal, 5, 1877–1892. doi:10.28991/cej-2019-03091379
  • IAEA. (2013). Isotope methods for dating old groundwater. International Atomic Energy Agency.
  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8, 23–39. doi:10.1080/21553769.2014.933716
  • Masok, F. B., Masiteng, P. L., Mavunda, R. D., & Maleka, P. P. (2017). An integrated health risk evaluation of toxic heavy metals in water from Richards Bay, South Africa. Journal Environmental & Analytical Toxicology, 7, 487–493. doi:10.4172/2161-0525.1000486
  • Masoud, A. A., El-Horiny, M. M., Atwia, M. G., Gemail, K. S., & Koike, K. (2018). Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis. Journal of African Earth Sciences, 142, 64–81. doi:10.1016/j.jafrearsci.2018.03.009
  • Massmann, G., Tichomirowa, M., Merz, C., & Pekdeger, A. (2003). Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). Journal of Hydrology, 278, 231–243. doi:10.1016/S0022-1694(03)00153-7
  • Nayak, K. M., & Sahood, H. K. (2011). Assessment of ground-water quality in tangi-choudwar and cuttack blocks of cuttack district Orissa India. International Journal Earth Science Engineering, 4, 973–985.
  • Nkansah, M. A., Donkoh, M., Akoto, O., & Ephraim, J. H. (2012). Multivariate statistical analysis for the assessment of hydrogeochemistry of groundwater in agbabu area, SW Nigeria. Coler. Proc, 2, 424–433.
  • Nkansah, M. A., Donkoh, M., Akoto, O., & Ephraim, J. H. (2019). Preliminary studies on the use of sawdust and peanut shell powder as adsorbents for phosphorus removal from water. Emerging Science Journal, 3, 33–40. doi:10.28991/esj-2019-01166
  • Ogunribido, T.H.T., & Kehinde–Philips, O. O. (2012). Multivariate Statistical Analysis for the Assessment of Hydrogeochemistry of Groundwater in Agbabu Area, SW Nigeria. Coler. Proc. 2, 424–433.
  • Pollack, A. Z., Mumford, S. L., Mendola, P., Perkins, N. J., Rotman, Y., Wactawski-Wende, J., & Schisterman, E. F. (2015). Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: A prospective cohort study. Journal Toxicology Environmental Health Part A, 78, 119–131. doi:10.1080/15287394.2014.944680
  • RadFard, M., Seif, M., Hashemi, A. H. G., Zarei, A., Saghi, M. H., Shalyari, N., … Samaei, M. R. (2019). Protocol for the estimation of drinking water quality index (DWQI) in water resources: Artificial neural network (ANFIS) and Arc-Gis. MethodsX, 6, 1021–1029. doi:10.1016/j.mex.2019.04.027
  • Saha, D., Singh, B., Srivastavai, S. K., Dwivedi, S. N., & Mukherjee, R., 2014. A concept note on geogenic contamination of ground water in India with a special note on nitrate. CGWB Rep.
  • Saleh, H. M., (2014). Some applications of clays in radioactive waste management, in: Wesley, L.R. (Ed.), Clays and Clay Minerals: Geological Origin, Mechanical Properties and Industrial Applications. Nova Science Pub. Inc., pp. 403–415.
  • Saleh, H.M., Eskander, S.B., (2019). Impact of water flooding on hard cement-recycled polystyrene composite immobilizing radioactive sulfate waste simulate. Constr. Build. Mater. 222, 522–530.
  • Saleh, H. M., Aglan, R. F., & Mahmoud, H. H. (2019a). Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chemistry and Ecology, 35, 164–178. doi:10.1080/02757540.2018.1546296
  • Saleh, H.M., El-Sheikh, S.M., Elshereafy, E.E., Essa, A.K., (2019b). Performance of cement-slag-titanate nanofibers composite immobilized radioactive waste solution through frost and flooding events. Constr. Build. Mater. 223, 221–232.
  • Saleh, H. M., & Eskander, S. B. (2020). Toxicity and remediation of radioactive pollutants. Journal Nuclear Energy Science Power Generation Technology, 9. doi:10.37532/jnpgt.2020.9(3).197
  • Saleh, H.M., Aglan, R.F., Mahmoud, H.H., (2020a). Qualification of corroborated real phytoremediated radioactive wastes under leaching and other weathering parameters. Prog. Nucl. Energy. 119. doi:10.1016/j.pnucene.2019.103178
  • Saleh, H. M., Mahmoud, H. H., Abdou, M. I., & Eskander, S. B. (2021). Health risk assessment based on metal analysis of soil and crops in Al-Dakhla Oasis. Arabian Journal of Geosciences, 14, 260. doi:10.1007/s12517-021-06597-3
  • Saleh, H. M., Mahmoud, H. H., Aglan, R. F., & Bayoumi, T. A. (2019b). Biological treatment of wastewater contaminated with Cu(II), Fe(II) and Mn(II) using Ludwigia stolonifera aquatic plant. Environmental Engineering and Management Journal, 18, 1327–1336. doi:10.30638/eemj.2019.126
  • Saleh, H. M., Moussa, H. R., El-Saied, F. A., Dawoud, M., Nouh, E. S. A., & Abdel Wahed, R. S. (2020a). Adsorption of cesium and cobalt onto dried myriophyllum spicatum L. from radio-contaminated water: Experimental and theoretical study. Progress in Nuclear Energy, 125, 103393. doi:10.1016/j.pnucene.2020.103393
  • Saleh, H. M., Moussa, H. R., Mahmoud, H. H., El-Saied, F. A., Dawod, M., & Abdel Wahed, R. S. (2020b). Potential of the submerged plant myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Progress in Nuclear Energy, 118, 103147. doi:10.1016/j.pnucene.2019.103147
  • Sengupta, P. (2013). Potential health impacts of hard water. International Journal of Preventive Medicine, 4, 866.
  • Sharaky, A. M., & Abdoun, S. H. (2020). Assessment of groundwater quality in Bahariya Oasis, Western Desert. Egyptian Environmental Earth Science, 79, 1–14.
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133–164). Springer.
  • Tietz, N. W. (1990). Clinical guide to laboratory tests (2nd ed.). Philadelphia.
  • USEPA. (2007). Framework for determining a mutagenic mode of action for carcinogenicity. Cancer 1–50.
  • USEPA. (2012). Waste and clean up risk assessment [WWW document]. Retrieved from https://www.epa.gov/risk/waste-and-cleanup-risk-assessment
  • Westgard, J. O., Barry, P. L., Hunt, M. R., & Groth, T. (1981). A multi-rule Shewhart chart for quality control in clinical chemistry. Clinical Chemistry, 27, 493–501. doi:10.1093/clinchem/27.3.493
  • WHO. (2003). Total dissolved solids in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Geneva.
  • WHO. (2004). Guidelines for drinking-water quality (3rd ed.). (Vol. 1, pp. 564). Who. doi:10.1016/S1462-0758(00)00006-6
  • WHO. (2006). Guidelines for drinking-water quality [electronic resource]: Incorporating first addendum (Vol. 1). Recommendations.
  • WHO. (2009). Potassium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization.
  • WHO. (2011). Guidelines for drinking-water quality. (Vol. 216, pp. 303–304). World Health Organization.
  • WHO. (2016). Barium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Geneva.